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PREFACE

IN this book I have attempted to present the basic principles
of magnetohydrodynamics which may be derived simply,
and with reasonable mathematical rigour, from an element-
ary continuum mode!l of a fluid. The reader is assumed to
be familiar with the ideas leading up to the formulation of
the Maxwell equations of electromagnetic theory and with
vector methods. Although an understanding of fluid
dynamics would be helpful, it is not strictly essential since
any concepts needed are derived directly from first principles.

The picture of magnetohydrodynamics that can be
presented by confining attention to a simple continuum
approximation is, quite naturally, restricted in its appli-
cability. Nevertheless, it still merits examination because it
offers the easiest model by which the striking influence of
magnetic fields on moving electrically-conducting fluids may
be understood.

Many situations involving electrically-conducting gas
flows require a more satisfactory description in terms of the
Boltzmann equation used to describe plasma physics, but
unfortunately such a discussion is beyond the scope of this
book. However, it should be understood that the simpler
explanation offered here suffices for the description of many
geophysical and astrophysical phenomena and can also
provide valuable approximations in various other situations.

The decision to discuss only those topics for which a
straightforward and satisfactory mathematical argument
exists has, of necessity, confined the treatment to certain
aspects of magnetohydrodynamics. It is hoped, however,
that the coverage is still fairly representative and that the
simple physical discussions occasionally offered in place of a
proper analysis will help to focus attention on matters
requiring further examination should a more penetrating
study be undertaken. Thus, for example, only a passing
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vi PREFACE

reference has been made to the stability of magnetohydro-
dynamic flows and shock waves. Also, only a simple
physical description has been offered to indicate something
of the many possible instability mechanisms that can occur
to interfere with attempts at plasma containment by
magnetic fields.

In order to supplement the text, and to show connections
with electromagnetic theory and fluid dynamics, a few
examples have been included which are not of direct
relevance to magnetohydrodynamics. These examples have
been indicated by an asterisk and may be disregarded at a
first reading. The remaining examples have been chosen
either to involve analysis that has only been briefly indicated
in the text, or to provide a direct extension of the discussion
in the text. For this reason these examples, which usually
contain both a hint for the method of solution and the
answer itself, should be attempted.

Following the accepted practice in the University
Mathematical Texts, I have, with one exception, confined
suitable cross-references to other publications in the same
series. Because of this no proper form of acknowledgement
to workers in the field of magnetohydrodynamics has been
possible throughout the book. I am therefore taking
advantage of the preface to acknowledge my debt of
gratitude to Professors H. Grad, K. O. Friedrichs and
J. Bazer of New York University, much of whose early work
is described in this book. Their influence on my approach
to magnetohydrodynamics, which took place largely during
my stay at the Courant Institute of Mathematical Sciences
in 1960-61, will be apparent to anyone familiar with their
contributions.

Finally, I would like to express my gratitude to Professor
D. E. Rutherford, Editor of this Series, for his early
encouragement in the preparation of this manuscript and
for his many suggestions for its improvement.

June 1965 Al
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CHAPTER 1

THE FUNDAMENTAL EQUATIONS OF
MAGNETOHYDRODYNAMICS

§ 1. Introduction. Magnetohydrodynamics is the study
of the macroscopic interaction of electrically-conducting
liquids and gases with a magnetic field. As would be
expected, both the equations of fluid mechanics and of
electromagnetism feature in the description of magneto-
hydrodynamic flow; each impressing something of its own
distinctive features on the subject. In our study of
magnetohydrodynamics we shall assume familiarity only
with vector analysis and with elementary electricity and
magnetism extending as far as the formulation of the
Maxwell equations. The necessary properties of fluid
dynamics will be developed directly from the basic con-
servation laws of mass, momentum and energy. Reference
will on occasion be made to pure hydrodynamical flows as
limiting examples of magnetohydrodynamic flows, and at
such times some familiarity with classical fluid dynamics
would help to deepen understanding; this knowledge is,
however, not essential. Hereafter the word fluid will be
used to denote a continuum medium which may be either a
liquid or a gas.

Although some of the features of magnetohydro-
dynamics are apparent when any ordinary electrically-
conducting fluid such as mercury or liquid sodium moves
in a magnetic field they are, in general, significant only in
extremely high-temperature gases. All matter becomes

1



2 MAGNETOHYDRODYNAMICS §1

ionised at sufficiently high temperatures forming a gas
composed of individual ions and electrons. For ordinary
gases ionisation occurs at temperatures in excess of
10* °K (Kelvin) while in the temperature range 10° °K to
10° °K, which typifies astrophysical phenomena, all matter
is to be found in this state.

In the absence of a magnetic field a highly ionised gas
behaves in most respects like a classical gas, but this
behaviour is modified in a striking manner when a magnetic
field is applied. Wave motions and fluid flows of a kind
previously unknown occur and it is, for example, possible
to generate waves in an ionised gas having features more in
common with electromagnetic waves than with hydro-
dynamical waves, and so differing essentially from any
disturbances that can occur in ordinary electrically non-
conducting fluids. These remarkable effects have been
used to account for many important physical phenomena,
and considerable success has been attained in astrophysics
where magnetohydrodynamic mechanisms have been
suggested for the generation of the solar and terrestrial
magnetic fields.

Although when matter is highly ionised ordinary
chemical and physical properties are lost, it is, nevertheless,
still in a highly complex state and its description must be
phrased in terms of the energy exchanges and motions of the
interacting particles. To describe these effects correctly
would necessitate the detailed consideration of all the
individual particles involved in the system: a prohibitively
difficult task, involving as it does the microscopic behaviour
of a very large number of interacting particles. The
magnitude of the problem can be seen from the fact that the
number density of particles in the outer layers of the sun’s
corona is approximately 10® particles/cm®, while at room
temperature and pressure air has approximately 3 x10*°
molecules/cm®. To overcome this difficulty of description
two quite different points of view may be adopted according



§1 FUNDAMENTAL EQUATIONS 3

to the nature of the problem; namely, the approaches of
plasma physics and of magnetohydrodynamics. In plasma
physics the observable properties of an ionised gas are
described in terms of the collective behaviour of the
individual particles forming the gas, while in magneto-
hydrodynamics a large-scale description of the behaviour
of an electrically-conducting fluid is given in terms of a
continuum approximation.

An ionised gas is called a plasma when the Debye
shielding length 1, in the ionised gas, that is the distance at
which the electric field of a charge is shielded by neighbour-
ing charges of opposite sign, is small compared with a
representative length of interest. This important dimension
provides an estimate of the maximum distance over which
the local concentrations of positive and negative charge may
differ appreciably from one another thereby causing a local
departure from electrical neutrality. In a plasma in which
ions and electrons are in thermodynamic equilibrium at an
absolute temperature T having a number density N of
electrons/cm?, the Debye shielding length A, varies approxi-
mately as (T/N)* and, for a plasma at a temperature of
10° °K with a particle density of 10'®/cm?3, has the value
1-6 x1075 cm.

Some indication of the intensity of the electric field that
acts to enforce the equality of electron and ion densities
throughout the plasma may be easily obtained by consider-
ing the following simple example. We consider a sphere of
radius r = 1 cm and assume that within it the aggregate
electron charge exceeds the aggregate ion charge by
1 per cent., resulting in a total negative charge Q. Then,
for an assumed electron density of 10'# electrons/cm?®, we
have from Gauss’s law that the electric field close to the
surface of the sphere is

2

E= Q _4n x10'* x 10 2¢,
r 3



4 MAGNETOHYDRODYNAMICS §1

where e = 4-8 x 1070 e.s.u., is the charge on an electron.
So, near to the surface of the sphere, E = 2 x 10® in electro-
static units of potential. To convert this result to the
practical unit, the volt, we must now multiply by the
conversion factor ¢/10%, where ¢ = 3 x10'® cm/sec is the
velocity of light in a vacuum. We then obtain E = 6 x 10°
volts.

The size of the electric field that is produced by this
apparently small departure from electrical neutrality in the
plasma shows that since the plasma is electrically conducting
we must always assume that there is equality of electron
and ion charge density when using scales of measurement in
which the Debye shielding length is smaller than a
representative length of interest. Thus is will always be
assumed that no electric fields due to charge concentrations
can exist within a plasma.

For our purposes we shall consider plasma physics to
be the theory of ionised gases satisfying our definition in
which the collective properties of the ionised particles are
described in statistical terms, taking into account the
properties of individual particles and the complicated
energy exchange processes that can occur between them.

A satisfactory description of gases based on the statistical
behaviour of individual gas particles was first produced by
Boltzmann in 1872 in connection with studies of ordinary
gases. This must be extended to include ionised gases if an
adequate description of plasmas is to be obtained when
they occur in complicated non-equilibrium environments of
the type found in many experiments and in certain branches
of astrophysics. A detailed examination of the Boltzmann
equation for plasmas entails very considerable difficulties
but is essential if a proper understanding of general plasma
behaviour is to be achieved. Fortunately rather easier
considerations provide useful criteria by which the
applicability of simpler representations of electrically-
conducting fluids may be judged. As may be expected, it
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sometimes happens that the statistical description of a
plasma is sufficiently simple that by suitable averaging
processes it may be replaced by a continuum representation.
One criterion by which such an approximation may be
allowed is when the electron mean free path for collisions /
in the plasma is smaller than the Larmor radius r, of the
electrons in the plasma; that is the radius of the helical
path followed by a free electron in the applied magnetic
field H.

This condition follows from the fact that when the
electron Larmor radius is less than the electron mean free
path for collisions, the magnetic effects become pre-
dominant in the equation describing electron behaviour and
cause anistropic electrical conductivity in the plasma. The
anisotropy that then occurs is due to the fact that if, under
these conditions, an electric field acts such that it has a
component perpendicular to the magnetic field H then, as
well as the helical particle motions produced by the magnetic
field, there is also an appreciable general drift of particles
in a direction which is perpendicular to the plane deter-
mined by the magnetic field and the transverse electric field
component. This then produces the surprising physical
effect that the current that is caused to flow is not as might
be anticipated from Ohm’s law parallel to the applied
electric field. The current produced by this anistropy in the
electrical conductivity of the plasma is called the Hall
current. This current can be detected in ordinary metallic
conductors which are subjected to strong magnetic fields and
it is named after E. H. Hall who, in 1880, was the first to
detect such a current in a thin gold leaf subjected to mutually
perpendicular magnetic and electric fields.

However, provided r,>/, the Hall current is negligible
and the electrical conductivity of the plasma may be
considered to be a scalar. The current that then flows as a
result of an electric field being applied to the plasma is
parallel to the electric field; the relationship between
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current and electric field being approximated by Ohm’s law.
The electrical conductivity of plasmas can become extremely
high and a good approximation to many problems may be
achieved by assuming it to be infinite.

The electron Larmor radius in a plasma which is in
thermodynamic equilibrium at an absolute temperature T,
and is subjected to a magnetic field of strength H gauss,
varies approximately as (7/H?)*. The value of r, corre-
sponding to a temperature of 10° °K and a magnetic field of
strength 2:5 x 105 gauss would be approximately 6:1 x 10™*
cm. The electron mean free path for collisions / is difficult
to estimate but for our purposes may be assumed to vary
approximately as (T?/N)[4A+1log, TAp]~!, where again N
is the electron number density/cm?® and 4 is a constant. If
in the previous example N = 10'®, the electron mean free
path for collisions would be / = 49 x10™% cm. It will be
readily seen that for low densities and high temperatures
the electron mean free path for collisions can easily attain a
value which is comparable to the dimensions of experi-
mental apparatus. To prevent interaction with the walls of
the containing vessel under these conditions it is necessary
to contain the plasma by means of specially cutved magnetic
fields which attempt to confine particles to a closed volume
within the walls of the apparatus.

When a plasma is considered to behave as a perfect gas
with adiabatic exponent y, the speed of sound a in the
plasma, determined by the methods of the simple kinetic
theory of gases, is a = (ykT/m)* cm/sec, where k = 1:37
% 10~ 16 erg/degree is the Boltzmann constant and m is the
average particle mass. In the case of a plasma in thermal
equilibrium comprising equal numbers of electrons and
protons at a temperature 105 °K and having an adiabatic
exponent y = 5/3, the sound speed would be approximately
a = 52x106 cm/sec.

A thorough study of the Boltzmann equation must be
made in order to assess the relevance of all the important
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parameters occurring in plasma physics and of the condi-
tions under which many different approximations are valid.
However, the previous simple discussion based on average
properties of a plasma must suffice to indicate for us the
approximate behaviour of the three very important para-
meters Ap, r, and /, and to provide simple criteria by which
we may judge the applicability of the magnetohydrodynamic
approximation. So, when r,>/ and, furthermore, the
energy exchange processes in the plasma are in thermo-
dynamic equilibrium, we have indicated that for dimensions
in excess of A, the electrical and fluid properties of the
plasma are of a conventional type appropriate to a
continuum conducting fluid.

Accordingly then we assume these conditions to be
satisfied, and take as the starting point of the magneto-
hydrodynamic description of a plasma the macroscopic
continuum equations of fluid mechanics and of electro-
magnetic theory applied to an electrically conducting fluid.

Even within the simplified structure of magnetohydro-
dynamics further approximation is still possible and will
need to be made from time to time in order to simplify a
problem or to approximate a physical situation. Thus,
when discussing the flow of an electrically-conducting fluid
through a parallel channel with a magnetic field super-
imposed perpendicular to the channel walls, we shall find
that we are able to solve the problem with the assumptions
that the fluid is both viscous and has finite electrical
conductivity; on other occasions, however, it will be
necessary to consider only inviscid and perfectly conducting
fluids if analytical results are to be obtained. Idealisations
of this type are common in physics and applied mathematics
and are usually required in order that an exact analytical
representation of some aspect of a subject be obtained.
Naturally it is highly desirable that these restrictions be
removed wherever possible but this is difficult, and to do so
usually necessitates recourse to approximate methods of
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solution, very often based on an intuitive physical under-
standing of the problem. We offer no discussion of these
approximate methods but would remark that the under-
standing that is required for their formulation is derived
only by familiarity with the simpler situations which we shall
examine later in considerable detail. Accordingly then, we
suggest that the discussion of magnetohydrodynamics that
is presented here be regarded as something in the nature of
an ‘“ asymptotic structure ” to the subject, often directly
applicable but sometimes describing only a limiting solution;
frequently just such a limiting solution as would be used to
test the correctness of an approximate solution to a real
problem. We shall discuss some real gas effects and later
it will be seen that a measure of the importance of real gas
effects such as the viscosity and the electrical conductivity
of the fluid in any given physical situation is provided by
certain non-dimensional parameters that will be introduced.
At this stage we will only remark that the assumption of an
inviscid perfectly conducting fluid suffices for a number of
practical purposes.

§ 2. The pre-Maxwell equations in a conductor at rest.
In an arbitrary inertial system of coordinates 1 the Maxwell
electromagnetic field equations, when expressed in terms of
Gaussian units, take the form

curl H= —j+ - —, 2.1
c c Ot
curl E= — 1 @, 2.2)
c Ot
divB =0, 2.3)
div D =4ngq, 2.4

+ A system of space coordinates in which a free particle, which is
subjected to no forces, moves in a straight line without acceleration.
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in which ¢ is time, D and E are the electric displacement
and the electric field vectors, respectively, H is the magnetic
field vector, B is the magnetic induction vector, j is the
current density vector measured in e.s.u., ¢ is the velocity
of light and ¢q is the charge density. We showed earlier
that no electric fields can exist in the fluid due to local
concentrations of charge and so, since most problems of
interest involve only an external magnetic field we shall,
unless otherwise stated, assume that no external electric
field is present. Combining equations (2.1) and (2.4)
immediately gives the charge conservation law

%9 4 divj =0. @.5)
ot

This result is seen to be a direct consequence of the field
equations of electromagnetism which express only those
fundamental properties which are true for all electro-
magnetic continua and do not depend for their validity on
any physical assumptions that may be made about a
particular medium. When expressed in mathematical form,
the physical assumptions that are taken to characterise a
medium are called the constitutive equations. In a uniform
isotropic medium, which is at rest relative to the inertial
system, the quantities D, E, B and H are related by the linear
constitutive equations

D = ¢E, (2.6)

B = uH, )
where ¢ is the dielectric constant and u is the magnetic
permeability, both of which are assumed to be constant.
When the medium is also a homogeneous electrical con-
ductor, the current flowing is the conduction current and,
assuming Ohm’s law as the appropriate constitutive
equation, the conduction current j is proportional to the
electric field vector E, giving

Jj = oE, (2.8)
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where ¢ is the electrical conductivity. If a free charge exists
we must add to the right-hand side of equation (2.8) the
convection current resulting from the motion of the charge.
However, we shall show in the following discussion that
one of the consequences of an assumption that is basic to
magnetohydrodynamics is that a charge ¢ cannot persist in
a conductor at rest.

To see the nature of this important assumption and to
establish our assertion let us combine equations (2.4) and
(2.5) and then apply dimensional analysis to the result

div (4nj+ ‘31—’> =0.
ot

First, notice that the operator div has dimensions L™!,
where L is a representative length of interest, and the

0 . . . . _
operator gt has the dimensions of reciprocal time, 77!,

where T is a representative time of interest which, although
we are not discussing periodic phenomena, it is often useful
to interpret as a frequency @ of some phenomenon of
interest. These quantities are of necessity somewhat
arbitrary in their specification and, as we will show later, it
is only a non-dimensional combination of them that is
significant. However, to interpret o a little more precisely,
we might consider that the sound velocity a in a plasma
represents a velocity of interest when, if L is a typical
dimension in the experiment, @ = T~! = aL™!. For a
plasma with sound speed 5x10% cm/sec and a typical
dimension L = 10%> cm, w = 5x10*sec™!. Using the idea
of a representative frequency w we can use the constitutive
equations (2.6) and (2.8) in the above equation to show that
the condition for

9D |
ot |

|
IT
ﬁlu—-
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is that

8 <. o))
4rno

This is one of the basic assumptions that is made in magneto-
hydrodynamics, and in subsequent work we shall always
assume that o satisfies this condition. Since in most
metallic conductors ¢ is of the order 5x10!7 in e.s.u., the
condition (I) is valid even when w is close to the frequencies
occurring in optical phenomena.

It is a direct consequence of the assumption (I} of

magnetohydrodynamics that the displacement current 1 %lt—)
c

occurring in Maxwell equation (2.1) can be neglected,
thereby reducing the equation to

curl H = 4%, 2.9)
4

The system of equations (2.2), (2.3), (2.4) and (2.9) will
be called the pre-Maxwell equations in the sense that they
describe electromagnetic phenomena as they were under-
stood before Maxwell introduced the displacement current
term.}t If, now, we take the divergence of equation (2.9) it
follows at once that

divj = 0, (2.10)

so that in systems described by the pre-Maxwell equations
the current vector j is solenoidal and all currents must flow
in closed circuits. Using Ohm’s law (2.8) and equations
(2.4), (2.6) and (2.10) we then see that

divD =0,0rg =0.

t See Coulson, Electricity, 1951, p. 224. Notice that j in equation
(2.9) above is measured in e.s.u. To convert to e.m.u., as used by

Coulson, replace % Jbyj.
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This establishes our assertion that the pre-Maxwell
equations lead to the result that a charge cannot exist in a
conductor which is at rest in an inertial system.

By taking the curl of equations (2.2) and (2.9), and using
equations (2.7) and (2.8) together with the divergence
conditions div H = 0 and div E = 0, we obtain

VH = 4"# oH (2.11)
¢t ot
and
V2E = 4:;’“ %55 @.12)

These equations are parabolic in type and describe a
diffusion process analogous to the flow of heat in a solid
thus showing that the electromagnetic disturbance described
by the pre-Maxwell equations diffuses through a conductor.
A simple dimensional analysis of equations (2.11) and (2.12)
then shows that the order of magnitude of the decay time,
the time in which the field decays to 1/e of its initial value,
is given by the expression 4mouL?/c?>, where L is a
representative length of variation of the magnetic field.

§ 3. The electromagnetic field in a moving rigid conductor.
Let us now consider the electromagnetic field in a slowly
moving rigid conductor in a laboratory. A general dis-
cussion of this problem would involve the ideas of the special
theory of relativity and would be out of place in this account.
Instead, let us be content to show how, with one additional
assumption, the non-relativistic equations may be derived.

The assumption which we now make in addition to
condition (I), that ew < 4no, is that a representative velocity
V of the conductor is small compared with the velocity of

light ¢, and hence that
2
(K) <l an

c
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In the subsequent discussion we shall refer to the
laboratory system of coordinates which will be assumed to
be fixed and will be regarded as an inertial system of co-
ordinates. Such a system is of course not necessarily an
inertial system since, for example, the laboratory system
of coordinates fixed relative to the earth is a rotating co-
ordinate system relative to the sun. The Maxwell equations
(2.1) to (2.4) are valid in any inertial system, irrespective
of whether or not the conductor in question is moving or
fixed with reference to the system of coordinates.t How-
ever, this is not the case for the constitutive equations (2.6)
to (2.8) since they are expressions of relationships in the
particular coordinate system that moves with the conductor.

Indeed, one non-invariant property of the constitutive
equations of electromagnetic theory is already familiar in
the form of the expression relating the electric field E, that
is experienced by a stationary observer, to the electric field
E’ experienced by an observer moving with velocity v in a
magnetic field with magnetic induction vector B. This

expression,
E'=FE+ 1(v x B),
¢

describes the Lorentz force experienced by a moving unit
charge,f and is seen to depend on the motion of the
observer relative to the fixed reference frame in which E is
measured. The force is seen to comprise the component
due to the field E together with the electromagnetic body

force 1(v x B) due to the rate at which lines of force are
¢

crossed. Motion along the magnetic lines of force will not

produce an electromagnetic body force.
It is a postulate of the special theory of relativity that a

T See Rindler, Special Relativity, 1960: the discussion on
relativistic electrodynamics establishes this important property.
1 See Coulson, Electricity, 1951, p. 121,
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measuring rod, moving with speed v relative to another
frame of reference, varies in length relative to that frame as
the Lorentz contraction factor y = (1 —v?/c?)? (see Examples
2 and 3 of § 12). By condition (II) above, this factor y
will become unity in the magnetohydrodynamic flows
which we shall consider. The connections between the
primed and the un-primed quantities in relativistic motion
are then considerably simplified and, for example, the true
relativistic relationship that exists between E and E,
namely

E' =yE+ 2 (0. EX1-9)+ :—f(vxm,
v

reduces to the non-relativistic result just discussed. Thus
condition (II) is really just the condition that ensures that
relativistic effects can be ignored.

Let us now consider a conductor moving with a constant
velocity v relative to an inertial frame of reference, and
denote by a prime the values of all quantities in the co-
ordinate system moving with the conductor. Quantities in
the inertial frame of reference are un-primed. Then, from
the constitutive equations (2.6), (2.7) and (2.8), we have

D’ = ¢E’, 2.6")

B’ = uH’, (2.7)
and

j’ = oE". (2.8)

The relationships between the quantities D’, E’, B’, H’, j’
and ¢’ measured in the moving frame and the quantities
D, E, B, H,j and g measured in the laboratory system which
we shall use, corresponding to the assumption that y = 1,
are T

D' =D+ 1(va), (3.1a9)
c

t See Rindler, loc. cit., and Tolman, R. C., Relativity, Thermo-
dynamics end Cosmology, Oxford, 1932, § 52.



§3 FUNDAMENTAL EQUATIONS 15

E =E+ i(va), (3.1b)
H =H+ 1; (vx D), (3.2a)
B =B+ Zl'(v X E), (3.2b)
Jj'=Jj—qv, (3.3)
7 =a- % (.9) (3.4)

Now, because the dimensions of curl are L™! and the

dimensions of 9 are T~!, we have from equation (2.2) the
relation t
1:'|E|~61T*‘[B|,
leading to
|E|~ 28] (22)

and so, since v~ V, the third terms in equations (3.2) are of

2
order (K> and may be neglected. The condition g = 0
c

derived in § 2 causes the third term in equation (3.3) to
vanish and, since it is true for any inertial system, gives
as the condition on ¢’ in the moving system
q =0. 3.5
In non-relativistic magnetohydrodynamics the con-
stitutive equations (3.1) to (3.4) thus reduce to the following
important set of equations

D =D+ Loxm), (3.6a)
c
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E =E+ —i(v « B), (3.6b)

H=H, (3.7a)

B’ =B, (3.7b)

i'=iJ (3.8)
and

q'=q—clz(v.j)=0. (3.9)

Introducing equations (3.6b) and (3.8) into equation
(2.8") gives

J =0{E+ 1(v xB)}, (3.10)
¢

whilst from equations (3.6a) and (3.7a, b) we see that
equation (2.7’) is invariant and that equation (2.6") is
transformed into

D = sE+ L (eu—1)wx H). G.11)
4

The equation in the moving conductor,

divE =4 =o,
&

is however not invariant under this transformation and
becomes

div E+ & {(curl v). H—(curl H).v} = 0.
¢

By using equation (2.9) together with the fact that v is a
constant vector, this reduces to

divE=4n—2ﬂv.j
[4
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or, by equation (3.9), to
div E = 4npg. (3.12)

These results emphasise that it is meaningless to speak
of the electric field or the charge without first specifying the
coordinate system in which they are to be measured.

§ 4. A moving deformable conductor. So far we have
assumed that the conductor is rigid and moves with a
constant velocity. When the conductor is accelerated or is
a deformable body such as a liquid or a gas the velocity v
will be a function of space and time; consequently a system
of coordinates moving with any part of the conductor will
not be an inertial system. To apply our results to a fluid we
must now consider the consequences of having a deformable
conductor. In a system of coordinates which is not an
inertial system the Maxwell equations do not take the form
displayed in equations (2.1) to (2.4). However, even in this
case we may consider an inertial system at an arbitrary
point in the conductor which momentarily moves with that
element of the conductor. Then, in each inertial system so
defined, we still have the relations (2.6) to (2.8") and the
transformation laws (3.1) to (3.4), but the assumptions (I)
and (II) now no longer lead necessarily to the equation
q’ = 0. This result may easily be understood as follows.
The expression ¢’ = 0 was a consequence of the differential
equations (2.4), (2.8) and (2.10) which assume the existence
of an inertial system rigidly fixed in the conductor. Since
no one of the inertial systems just defined can move with the
conductor for all time, it follows that if a coordinate system
moves with any point of the conductor for all time then it
cannot in general be an inertial system.

When g’ cannot be set equal to zero in equation (3.9) we
cannot immediately neglect the convection current described
by equation (3.9). Since, apart from this point, the situation
is identical with that of the previous case, we still have the
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transformation laws (3.6a, b) and (3.7a, b) together with
equation (3.9), where ¢’ is now no longer equal to zero,
while from equation (3.3)

J =j—qv. 4.1
Equation (2.8’) thus becomes

J =qv+a{E+ l(v><B)}. 4.2)
c

The consequences of these results may be seen as follows.
First, from equations (2.4) and (3.11), we find that

8diV{E+ £(v><B)} - } div(vx H) = 4nq.
c c

Multiplying by w/4ne and using condition (I), we see that
to within the accuracy implied by conditions (1) and (IT),

g =— 1 divox H). (4.3)
4nc
Using this value of q in equation (4.2) then gives
j="2div (va)+a{E+ l(va)}.
4nc c
Thus, multiplying by ?, noticing that v~V and using (II),
c
this reduces to our earlier equation
j=¢ {E-*- Lo xB)}. (3.10)
¢

Hence, making the assumptions (I) and (II), we see that the
current j is still given by expression (3.10) but that the charge
q is related to the magnetic field H and the velocity v by
equation (4.3). To see this relationship more clearly in
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terms of ¢’ let us expand the right-hand side of equation
(4.3) and use equation (2.9) to obtain

- 1H.curlv=47t<q— %v.j)
¢ c

which, by equation (3.9), is equivalent to

¢ =— L H.curlv. 4.3)
4nc

This last equation gives the charge ¢’ in terms of the velocity
v and the magnetic field strength H. If the motion of the
conductor is irrotational (curl v = 0) we again have g’ = 0.

§ 5. Energy of the electromagnetic field. Eliminating E
between equations (2.2) and (3.10) and using equations
(2.3), (2.7%), (2.9) and (3.7) we obtain the following equation
in terms of v and H,

2
< V2Hicurl (v xH)— H _, (5.1)
4nuc ot

Equations (2.9), (3.10) and (4.3) will be regarded as the
definitions of the current j, the electric field E and the
charge g, respectively. Equation (5.1) is the basic equation
governing the electromagnetic field in an arbitrarily moving
conductor. Multiplying this equation by the magnetic field
vector H we find after some manipulation (see Examples
4 and 5, § 12) that it may be written in the form
2
3B Exan -5
ot ue

2
—div {Hx(v x H)— 5 Hxcurl H}. (5.2)
4nuc
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Integrating this expression over a fixed volume V and using
Gauss’s divergence theorem and equation (2.9) we finally
obtain

) 2 22
O M gy — By m@xjyav— | Lav
ot v 8n cJv y O

2
~ L JExwxH) - X~ Hxcurl HY .dS, (5.3)
47 ) dnuc

where S denotes the surface enclosing the volume V.
By virtue of relation (2.2°), the electric field energy
2
density 88£ is negligible in comparison with the magnetic
7

2
field energy density ‘{i, and so equation (5.3) is the energy
T

equation for the electromagnetic field. The first term on
the right-hand side of equation (5.3) is equal to the work

done by the magnetic force L Jj x B, the second term is the
c

Joule loss which is observed as heat and the third term
represents the flow of electromagnetic energy passing
through the surface S. This energy flow will of course
vanish if the magnetic field does not exist outside the
volume under consideration. In such a case, it is also
possible that the magnetic field energy increases with time
if the first term exceeds the second. These two situations
correspond, respectively, to a steady and to a growing
magnetic field and are therefore of importance in connection
with magnetohydrodynamic dynamo theories which attempt
to explain the origin of stellar and terrestrial magnetic

fields.
Equations (5.2) and (5.3) are sometimes expressed

1 Compare with Coulson, Electricity, 1951, p. 230.
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differently in terms of the Poynting vector
P=SExH (5.4)
4n

In the absence of dissipative effects this vector represents
the energy flow per unit time across a fixed surface of unit
area normal to P, as may be seen directly from equation
(5.2) when infinite conductivity is assumed, since it can then
be written in the form

2
divP=—ﬁ(‘ﬂ>-—1v.(ij). (5.5)
ot\ 8n c

The first term on the right represents the rate of decrease
of the magnetic energy, while the second term represents

the rate of doing work against the magnetic force L JjxB.
4

The integral form of this relation follows from equation
(5.3) which, in the case of infinite conductivity, becomes

2
Jp.d5=-."_ FH 4y L[ 4 (jx B)V. (5.6)
'S ot v 8n CJy

When the volume ¥V is moving this result must be slightly
modified to include the change of magnetic energy due to
the change of the volume Vitself. The arguments involved
are essentially similar to those that will be used in Chapter
VI for the derivation of a rate of change theorem for vectors
from which the shock conditions will be obtained. For a
volume ¥(f) moving with a velocity u, not necessarily equal
to the fluid velocity v, the modification amounts to the

2
addition of a term J (%H-> u.dS to the left-hand side
s '

of equation (5.6).

t Coulson, loc. cit., p. 232.
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§ 6. The basic equations of inviscid magnetohydro-
dynamics. Hereafter we shall assume that the conductor
is a fluid or a plasma of the type discussed in the intro-
duction. So far in our discussion we have taken the point
of view that the motion of the conductor is given. However,
it is obvious that the motion is affected by the electro-
magnetic field and due account must be taken of this. Let
us assume for the moment that the flow velocity o(x, #) of
the conductor is given. The magnetic field determined by
equation (5.1) gives rise to the current, the electric field and
the charge through the equations (2.9), (3.10) and (4.3). On
the other hand, under the electromagnetic field thus induced
the charge and the current density induced at the same time

lead to the electric force gE and the magnetic force 1 Jj x B,
c

respectively, which act on the substantial or moving element
of the fluid. Thus it is clear that interaction may be
expected between the fluid and the field.

The total force per unit volume f acting on the fluid is
composed of three parts, the electromagnetic force f¢™, the
mechanical force f™ and the external force £,

The electromagnetic force given by the equation

fem =gE+ 1j x B
c
reduces to

fem_licp 6.1)
[4

since, by dimensional arguments and the use of equation
(2.2"), it is readily seen that the first term gE is of the order

3
(o
c\¢

which, by (IT), may be neglected in comparison with ! Jj xB.
9
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In an inviscid fluid the mechanical force F acting on a
fluid element with volume V and surface S is entirely
determined by the action of the fluid pressure p acting on S.
If the outward drawn vector surface element of area is dS

then
F=-— J pdS
s
which, by the Gauss divergence theorem, becomes
= — j grad pdV.
v

So, shrinking the volume V to the element dV, we see that
the force exerted by the fluid on the element dV is
—grad pdV. Hence the mechanical force f™ exerted by
the inviscid fluid on a unit volume is

f™ = —grad p. (6.2)

The equation of motion of the fluid moving with velocity
v can now be obtained by equating all the forces acting on
the elementary volume dV of the fluid to the product of the

mass pdV of the fluid element and its acceleration Dy giving,
after cancellation of dV, Dt

D
P El; =f(m)+f(em)+f(ex)5 (63)

D . .
where Dr denotes the substantial or total derivative ¥

following the fluid motion
D _ o
—- == . grad),
Dt = 7 +(v.grad)

1 See Rutherford, Vector Methods, 1954, p. 103. See also
Rutherford, Fluid Dynamics, 1959, p. 6.
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and p is the density of the fluid. Using equations (6.1) and
(6.2) we finally obtain the equation of fluid motion

o %’ = —grad p+ P jx H4f@, (6.4)
C

Let us now derive the equation expressing the con-
servation of mass of the fluid within an arbitrary volume V
bounded by a surface S. To do this we equate the mass of

fluid J‘ pv.dS flowing out through vector surface element

s
dS of the surface S to the loss of mass — —‘?-J pdV from
volume V, giving ot Jy

g—j pdV+fpv.dS=O.

Then applying the Gauss divergence theorem to the surface
integral leads at once to the equation

a—ﬁ, i =
J;{m +div (pv)} dv =0

which, since V'is an arbitrary volume, implies the following
continuity equation expressing the conservation of mass of
the fluid

%’ +div (pr) =0, 6.5)

If, now, we add the term v %’ to both sides of equation

(6.4) we can make use of the continuity equation (6.5) to
express the equation of motion of the fluid in a different
form. We find that

opv) _

o —grad p+ Ej x H—p(v. grad)v—v div (pv) + .
¢

(6.6)
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When the external force f that appears in equation
(6.6) can be derived from a scalar potential T then the force
field to which £ belongs is comservative and equation
(6.6) becomes an explicit expression of the momentum
conservation law. This would, for example, be the case
when f¥ was an ordinary gravitational force. External
forces will usually be neglected unless their effect is of
special significance.

§ 7. The basic equations of viscous magnetohydro-
dynamics. We now consider how the equations describing
inviscid flow require alteration to take into account the
effect of viscosity. It is clear that the continuity equation
(6.5) is valid for both viscid and inviscid fluids since it is
simply a statement of the conservation of mass within an
arbitrary volume and is independent of the nature of the
fluid. However the momentum equation (6.6) requires
modification since the physical effect of viscosity is to cause
a transfer of momentum between adjacent elements of the
fluid whenever their relative velocity is non-vanishing, and
this effect has not so far been taken into account.

Whereas in studying the elastic behaviour of a solid it
is the distortions of adjacent elements of the solid that are
important, in the viscous flow of a fluid it is only the time
rates of change of the distortions that are significant. This
is apparent from the fact that when the fluid moves as a
rigid body the relative velocity between particles is zero and
the viscous forces must vanish; consequently they can only
depend on the spatial derivatives of the components of the
fluid velocity vector v. The simplest possible assumption
that we can make about the relationship that exists between
the viscous forces and the space derivatives of v is that they
are linear. We shall make this assumption since experi-
ments have shown that this is a good approximation

; t That is £ *)is of the form f (°*) = —grad ¢, where ¢ is a scalar
unction.
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provided the relative velocities between adjacent fluid
particles are small. In solids the internal force acting per
unit plane area drawn in the material is called the stress
acting on the area and depends on the orientation of the
area. In fluids it is customary to speak both of the internal
stresses in the fluid and of the negative stresses which are
termed pressures. When a fluid is viscous the force acting
on a unit plane area does not usually lie along the normal
to the area. Rather than use the stress on such an area it
proves to be more useful if it is resolved into components
that lie along three chosen coordinate axes. The specifica-
tion of these three components then completely describes
the stress acting on the plane area in question. So, consider-
ing three mutually perpendicular unit plane areas at any
point P in the fluid, we see that the force acting on an
element of the fluid located at P is completely described by
the nine components of stress associated with these three
plane areas. The force per unit area on such a fluid element
results from the effect of the fluid pressure p, acting normal
to the area, together with the effect of the viscous forces.
Adopting the Cartesian reference frame O{x,, x,, x;}, we
shall denote by T{™ the x,-component of the mechanical
stress acting on a unit area drawn perpéndicular to the
x;-axis and located at P, and decompose T{™ as follows:

T = — pou+Vi (7.1)

where V; is the viscous stress and §; is the Kronecker
delta.

We must now consider the form of V. Since we have
postulated that ¥V should depend linearly on the spatial
derivatives of the components vy, v, and v, of fluid velocity
vector v it follows that in general ¥, must be a linear

combination of all terms of the form a—v". As a detailed
xq
examination of the form of V;, may be found elsewhere in
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texts on fluid dynamics ¥ we shall now only use simple
physical arguments to indicate how it is possible to arrive
at the form of V. First, since any change of volume of a
fluid element will be important, it is apparent that a term
proportional to div v must occur in each of the principal
viscous stresses V. This is in agreement with our
assumption of a linear relationship in ¥, since

oo | Oy o

dive =
0x; 0x, 0x4

Secondly, since viscous forces must vanish for any rigid
body motion of the fluid, and the most general such motion
combines a translation and a rotation, it follows that the

remaining terms of the form g 2 must vanish for all such
X
q

rotations. This is equivalent to requiring that all combina-
tions of such terms in ¥ must vanish when the velocity v
at a point P is given by v = @ x r, where o is the angular
velocity of the body and r is the radius vector from the
centre of rotation to P. Hence the only other terms that
may occur in ¥y are of the form (0v;/0x, 4 0v,/dx;). It is
customary to combine these two types of terms occurring
in ¥y in the following special way:

V=12 + %% _35, aiv v) +L0, dive, (7.2)
3 X 3 X;

where n and { are the two coefficients of viscosity, both of
which are positive and have dimensions M/LT. Here 7 is
the coefficient of shear viscosity or, as it is sometimes called,
the coefficient of dynamic viscosity and { is the coefficient
of bulk viscosity. These coefficients are temperature
dependent but for simplicity we shall assume that they
remain constant. Since { is usually very much smaller than

+ See Rutherford, Fluid Dynamics, 1959, § 56.
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n it is frequently neglected in discussions of viscous flow.
The (3 % 3) array formed by the quantities ¥, will be called
the viscosity stress tensor while the (3 x 3) array T™, where
T§™ is given by

Tzs‘m) = —p5,k+r] (a—vi + %‘ _3‘5"‘ div v) +C5ik div v, (7.3)
axk axi

will be called the mechanical tensor. When the fluid is
inviscid # = { = 0 and the mechanical tensor simply
describes the pressure. The modification to equation (6.6)
that is necessary for it to describe viscous flow is now clear:
each of the three components of gradp occurring in
equation (6.6) must be replaced by the sum of the gradients
of the appropriate three components of the stress tensor
TS{™. When this is done (Example 6, § 12) the momentum
equation for viscous flow becomes

o) _

o ~grad p+ Ej x H+nV?v+( +4n) grad div v
4

—vdiv (pv)—p(v.grad)o+£.  (7.4)

Alternatively, the equation analogous to (6.4), the equation
of motion, is

p 22— _grad p+ j x HtnV2o-+ (G +4n) grad div o+,
(4

Dt
(1.5)

which is a generalisation of the Navier-Stokes equation of
classical fluid dynamics.t

It is also possible to display the electromagnetic force
f©™, which is the same for both viscous and inviscid flows,
in the form of an electromagnetic stress tensor.

To do this we make use of equation (2.9) to re-write

1 See Rutherford, Fluid Dynamics, 1959, p. 201.



§8 FUNDAMENTAL EQUATIONS 29

equation (6.1) in the form
fem = curl Hyx H 6.1
4n

and use the identity grad H?> = 2(H.grad)H+2H xcurl H
to obtain

flem = f [(H.grad)H—} grad H]. (7.6)
n
Then, defining
Tem = £ (HH—3H5,). (7
4n
it follows that the x;-component f™ of f™ is given by
"(em)
flem = 3 T (7.8)
k=1 0x

The (3 x 3) array formed by the quantities ;™ will be given
the name the Maxwell stress tensor.

§ 8. Thermodynamical considerations. Since a fluid in
different thermodynamics states will behave in markedly
different ways it follows that when supplementing the
conservation equations of mass and momentum by the
addition of an energy equation, due account must be taken
of the thermodynamical environment of the fluid. The
energy conservation law is equivalent to the thermo-

dynamical law
TdS = de+pdr, 8.1

where T is the temperature, e is the internal energy per unit
mass of the fluid, S is the entropy per unit mass of the fluid
and t = 1/p is the specific volume of the fluid (i.e., the
volume per unit mass of the fluid). In a reversible process
TdS can be considered as the heat per unit mass that is

1 See Rutherford, Fluid Dynamics, 1959, p. 147.
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gained by the fluid due to conduction, while in an irreversible
process other sources of heat such as viscosity are present
which result in 7dS exceeding the heat acquired by con-
duction. The state of a gas is defined by the quantities
p, T, 7, S and e, only two of which are independent. It is
usually most convenient to express all quantities in terms of
7 and S, and for a gas in which the dependence of e on
and S is known, it follows at once from equation (8.1) that
T = de/0S and p = —de/dt. In our work we shall consider
an irreversible process to be one involving the effects of
viscosity and of electrical resistance and we shall interpret
the difference between T7dS and the heat acquired by con-
duction as the heat resulting from the effects of viscous
forces and of Joule loss. Equation (5.3) shows that the heat
per unit volume per unit time resulting from Joule loss is
equal to j%/o, whereas in ordinary hydrodynamics{ the
heat due to viscous forces is equal to

ov;

3
P _z5. di
&, (6xk ax,. $0u div ") %,

per unit volume, per unit time, while the heat acquired by
conduction is

div (y grad T")

per unit volume, per unit time, where x denotes the thermal
conductivity. From equation (8.1) we see that the increase
of heat per unit time of a unit mass of fluid as it moves in

. DS . .
space is TE’ and so the heat increase per unit volume,

D . .
pT—DLj, may be equated to the heat influx due to viscous

dissipation, Joule heating and thermal conduction per unit

1 See Rutherford, loc. cit., § 57. Notice that both here and
subsequently we assume that { = 0; a condition which is valid for
most viscous fluids which are adequately described by specifying 1.
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volume per unit time, to give
3 (o o j?
T— = + — —%5, dive +L
p 1 ;,k2= <8xk 6x; $ou 0x, o
+div (x grad T). (8.2)

Making use of the fact that t = 1/p enables the thermo-
dynamical law (8.1) to be rewritten in the alternative form
DS _ De_pDp
Dt Dt p Dt

Combining this result with equation (8.2) and using the
continuity equation (6.5) expressed in its alternative form

Dp .
L +pdivev=0, 8.3
D TP (8.3)
we find that
De . 3 ov;  Ov . ov
— = —pdive+ + £ 25, dive ) %
P Dt P 1 i.kz= <6xk 0x; $ou )6x,‘

.2
+L 4divrgrad T).  (8.4)
o
Now the total energy U per unit volume is
2
U =4pv’+ ‘-‘81—{- + pe, (8.5)
74

where the first term on the right-hand side is the contribution
due to the kinetic energy of the fluid, the second term is the
energy density of the magnetic field and the third term is the
internal energy density of the fluid. Assuming thatf® = 0,
differentiating equation (8.5) with respect to ¢ and making
use of equations (2.9), (5.2), (6.5), (7.5) and (8.4), we finally
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obtain the following expression of the energy conservation
law (Example 7, § 12)

%—(t] +divg =0 (8.6)

in terms of the energy flow vector g. The vector g is given
by the equation

= pv(3v? +1)+ Hx(vxH)— —churlH
4n 4nuc
i ( + 9y — 20, div v) vie,—yx grad T, (8.7)
= ax,, ax,'

where i = e+pr is called the enthalpy per unit mass of the
fluid and where e; is the unit vector parallel to the x;-axis.
The conservation laws (6.5), (8.6) and (7.4) or (7.5)
together with equation (5.1) constitute the basic equations
of magnetohydrodynamics. When these conservation
laws are supplemented by the addition of the constitutive

equations of state such as

P=P(P’T), e=e(p,T)

describing the properties of a particular fluid, the resulting
set of equations then completely determines the behaviour
of the interacting fluid and magnetic field when proper
boundary conditions and initial conditions are prescribed.
The conditions in a fluid are said to be adiabatic if there is
no energy transport to or from any fluid element and the
region external to the fluid.

For most purposes it is possible to assume that the
fluids under consideration behave like an ideal gas, and
hence that their equation of state is expressed by the law

pt = RT, 8.8)

where R is the universal gas constant. The internal energy
e of an ideal gas is dependent only on the temperature T and
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when, as is usually the case, the energy is assumed to be
proportional to the temperature T, the gas is called poly-
tropic. The consequences of this assumption are very
important and are sufficient to determine the dependence of
p on p and S as we now show.

The specific heat at constant volume, c,, of a gas is
defined to be the limit of the ratio of the energy supplied to
a unit mass of gas, T4, to 67, in raising its temperature an
amount 67 while keeping the volume constant. From
equation (8.1) we see that ¢, = de/0T. Clearly, for a poly-
tropic gas, we may write e = ¢,7. The specific heat at
constant pressure, c,, is similarly defined only here it is the
gas pressure instead of the gas volume that is kept constant
during the addition of energy. For a polytropic gas it
follows from equation (8.1) that ¢, = ¢,+pdt/0T or, since
from equation (8.8) we may write pdt/éT = R, this may be
written as

R=c,—c, 8.9

By writing equation (8.1) in the form
TdS = ¢, dT+ pdr,
and combining it with the differential form of equation
(8.8) we find that
pdt+tdp = RdT.
Then, using equation (8.9), we arrive at the equation

ds =c, dr +c, (E (8.10)
p T
Setting c,/c, = 7, the adiabatic exponent of the gas, equation
(8.10) may be integrated in terms of given initial conditions,
which we denote by a suffix 0, and written in the form

p = A(S)p’, (8.11)

A(S) = potg exp {(S—So)/c,}. (8.12)

where
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This shows the important fact that for a polytropic gas the
coefficient A(S) in equation (8.11) is a function only of the
entropy S and does not depend on the nature of the gas.

It is easy to see from the results so far obtained that the
fluid and magnetic field interaction which we have discussed
is completely different from the primary interaction between
the magnetic field and the charged particles which con-
stitute the conducting medium. Namely, the interaction
considered so far is essentially due to the induction resulting
from the motion of a conducting fluid across the magnetic
field. The current and charge do not play a primary role
as sources of the electromagnetic field, but are given as
consequences of the electric and magnetic fields produced
by the induction mechanism.

§ 9. Summary of basic magnetohydrodynamic equations.
Let us now summarise the basic equations and assumptions
of magnetohydrodynamics.

The equations of motion of the fluid

Mass conservation:

op

ot

Momentum conservation: (f¢* = 0)

a(pv) _
ot

+div (pv) =0. (6.5)

—grad p+ l-:j x H+nV*v+({ +4n) grad div v
—vdiv(pv)—p(v.grad)v  (7.4)
or
Dv
Dt
Energy conservation:

au .
— +divg =0 8.6
5 Tdive (8.6)

p =Y = —grad p+ ¥ j x H+nV2v+( +3n) grad div v. (7.5)
¢
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with
2
U =4pv+ "_8‘% +pe (8.5)
and
2
— polior+i)+ L { ¢ }
4nuc
3 6vk
Z 6x 6x —36, divv|ve,—xgrad T (8.7)
= k i

or, alternatively,

DS 3 o, ov;
T— = —* —26, div
P '7 <6x,‘ 0x; ~$0u di v) 0x;,

*2
+L 4+ div(y grad T). (8.2)
g

The equations for the electromagnetic field in the conductor
Equation for the magnetic field:

2
H _ il (oxH)+ —*— VH (5.1)
ot 4nuc
div B = div H = 0. (2.3)
Equation for current:
j=< curl A (2.9)
4n
Equation for electric field:
E=Yj_Foxn (3.10)
g 4

Equation for charge:

= “Ldiv o x H). (4.3)
4nc
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Constitutive equations:

D =¢E+ 1—(s,u—l)(v x H) (3.11)
c

B =pH. 2.7

The basic assumptions of non-relativistic magnetohydro-
dynamics

29 «1 1))
4rno

(%)2 <l. an

The constitutive equations in the coordinate system moment-
arily at rest in the conductor

D =¢E, B=uH, j=cE.

In order to illustrate how the basic equations determine
the flow and the field we now assume that there is no energy
gain to the fluid from external sources and that no viscous
forces act, and hence that the fluid is adiabatic and
reversible. These assumptions then imply that # = 0,

=0, y =0 and ¢ = oo and that p is given by the con-
stitutive equation of a polytropic gas

p = A(S), ©.1)

where A is a function only of entropy and y is the adiabatic
exponent.

The previous results then simplify to the following set
of equations which we shall call the Lundquist equation:

o]
%‘t’ +div (pv) =0 (6.5)

Dv _ (curl H) x H—grad p(p, S) (7.5
Dt 4n
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DS
— =0 8.2'
D1 (8.2)
%I—f = curl (v x H) (5.1)
divH =0, (2.3)

the current j being given by equation (2.9).

The eight scalar equations described by the Lundquist
equations are frequently used in magnetohydrodynamics
and constitute a consistent system of equations for the two
scalar quantities p and S and for the six components of v
and H. Equation (2.3) can be regarded as a constraint for
the initial configuration of the magnetic field H. To show
this we need only take the divergence of equation (5.1°) to
see that the condition (2.3) is automatically satisfied for all
time if it is satisfied initially.

§ 10. Basic properties of the magnetic field. Let us now
derive an important theorem concerning the rate of change
of the magnetic flux through a surface moving with the
fluid. To do this let us consider a closed curve I in space
and assume that I" moves with the velocity v(x, #) of each
fluid particle associated with I'. Further, let S denote a
smooth surface spanning I' and let each point of S also
move with the fluid particles associated with S. During
the time increment ¢ the curve I'y and the surface S, at
time ¢ move to become I', and S§,, respectively, at time
t+6t.

Now the magnetic flux t ¢ through the surface S, is

¢ =I H.dS,, (10.1)
Sy

where dS; is an element of the area S; and dS; = ndS,
with n, the normal to dS, chosen in the same sense as the

1 See Coulson, Electricity, 1951, p. 119,
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fluid velocity vector v. The change d¢ in the flux ¢ con-
sequent on the surface S; moving in time 67 to §, is

5 = J H(t+61).dS,— | H(@1).dS,, (10.2)
S2

Si1
or, since to the first order we may write

H(t+6t) = H(t)+ <a )5;

5¢ = J H(1).dS,— f H(1).dS, +6t J (‘”’) as,.
s> S Sa a
(10.3)

The infinitesimal displacement undergone by each point
P of Ty to become a point P’ of T, is clearly vdz, and we
shall denote by S; the surface ruled by all such vectors
PP’ (see Fig. 1). Then, adding to and substracting from the
right-hand side of equation (10.3) the flux through S5, and
reversing the sense of dS; so that it points outwards from
the volume ¥V enclosed by the surface S;+S,+S; we
obtain, to the first order,

56 = H(f).dS— j H(t).dS3+6tI (‘”I) ds,,
S1+852+8;3 S3 Sz 5
(10.4)

where dS is now an element of the surface bounding V.
However by the Gauss divergence theorem we may rewrite

the first term of equation (10.4) as f div H dV, which

|4
vanishes by virtue of equation (2.3). Choosing the sense
of the element dr of curve I’y so that dS; = (v xdr)dt we
see that the second term of equation (10.4) becomes

- j H.ds, = —6t§ H.(vxdr).
Ss r,
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Since H.(vxdr) =dr.(Hxv) we may apply Stokes’s
theorem t to this result to obtain

—J H‘dS3=-—5tJ‘ curl (H xv).dS|
S3 S

where, by the conditions of Stokes’s theorem, dS; is an
element of S, and is oriented so that a vector drawn from
the interior of S; to I'y, an element dr of I'; and dSj, taken
in that order, together form a right-handed set. Con-

sequently dS; = —dS, and so
- J H.dS, = 5tj curl (Hxv).dS;,
S3 S

Thus, equation (10.4) may be approximated to the first
order by

op = 5tf {6a_lt1 +curl (Hxv)} .dsS,;.
Sy

So, dividing by d7 and taking the limit as 6¢—0, we find that

D mas = 1% fcun@xwl.as,. (105)
Dt Js, s, L ot

We now substitute for 0H/dt from equation (5.1) to obtain,

D H.dS1=n,,,J' (V2H).dS,,  (10.6)
Dt S: $1

where 7, = c¢*/4nuc is the magnetic viscosity. Since
curl (curl H) = grad (div H)— V*H and since, by equation
(2.3), div H = 0, we have

curl (curl H) = —V*H

t See Rutherford, Vector Methods, 1954, p. 74. Notice that
although some authors use the symbol § to denote both a line integral
and a surface integral we shall reserve it exclusively for a line integral.
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or, using equation (2.9),
4z curlj = —V2H.
c

This result used in the right-hand side of equation (10.6),
together with Stokes’s theorem, gives the following
expression for the rate of change of the magnetic flux
through S,

Dl gas ==¢4 j.ar. (10.7)

Dt Js, uo Jr,

This equation shows that the change of the magnetic
flux passing through a surface fixed to the fluid particles is
determined by the electrical resistance. This situation is
exactly analogous to that which describes the motion of a
vortex in ordinary fluid dynamics with electrical resistance
taking the part of viscosity.

Now the momentum equation of ordinary fluid dynamics
is obtained if we set H = 0 in equation (7.5) and so,
remembering that we are neglecting the bulk modulus ¢,
we see that

o _ —(v.grad)v— 1grad p+ 1 (V2v+14 grad div v). (10.8)
p p

ot

The ratio £ of the moduli of the inertia term and the viscous
term of this equation is called the Reynolds number of the
flow and is given by

2= p I(v.grad)v I - gﬂ” (10.9)

n| V?v+4 grad divo |
where L is a characteristic length and V is a characteristic
flow velocity. The Reynolds number £ is a dimensionless

t The quantity v =n/p is called the coefficient of kinematic
viscosity.
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parameter of considerable importance in ordinary fluid
dynamics and is used to characterise conditions of flow and
to facilitate comparisons between similar flow configura-
tions. By requiring £ to have the same value in two
geometrically similar flow configurations it is possible to
select scales of measurement for experiments such that the
ratios of the terms in the equations of fluid motion of the
two system are the same, thereby enabling direct com-
parison of the results. Now by comparing equations (5.1)
and (10.8) we can similarly define a magnetic Reynolds
number Z,, as the ratio of the moduli of the convection term
and the diffusive term of equation (5.1). We find that

_ |eurl(vxH)| _ LV

(10.10)
e | VH| 9

This number is again non-dimensional and is strictly
analogous in its properties and uses to the Reynolds
number %.

If #,,> 1, the electrical resistance of the conductor and
consequently the resulting Joule loss and dissipation of the
magnetic field are negligible, just as the viscosity can be
neglected if 2> 1. In laboratory experiments using liquid
metals such as liquid sodium or mercury £,, is of the order
1072 to 1 and electrical resistance plays an essential role.
In astronomical phenomena where L is extremely large 4,
is of the order 10° or more and, moreover, in these cases
A is also sufficiently large so that the fluid may be considered
as a perfect fluid of infinite conductivity in which the motion
of the fluid is adiabatic. In high temperature plasmas the
conductivity is so large that although L is small, £,, is very
large and we encounter a situation similar to that in astro-
physics. In what follows a fluid for which all the dissipative
effects are negligible, namely #, { and y are equal to
zero and o is infinite, will be called an ideal conducting
fluid.
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If o is infinite it follows immediately from equation
(10.7) that

D
—| H.dS,=0. 10.11
D1 L, 1 (10.11)

Equation (10.11) states that the magnetic flux passing
through an arbitrary surface S; moving with the fluid is
conserved. This theorem was first stated by C. Walén and
T. G. Cowling and is sometimes expressed by saying that the
magnetic field is frozen in the fluid.

Let us now define a magnetic surface to be a surface in
which magnetic lines of force are embedded and out of
which magnetic lines of force do not issue. Then it is clear
that the magnetic flux passing through any closed magnetic
surface is zero. Alternatively we may consider a material
surface which is composed of particles of the fluid and,
consequently, each element of such a surface moves with the
fluid velocity v(x, #). Then, from equation (10.11), it may
easily be seen that if at any instant a material surface is a
magnetic surface then it is a magnetic surface for all time.
This result immediately implies that the magnetic lines of
force move with the fluid. Suppose that at ¢ = 0 the two
material surfaces given by

a(x’ 0) = ¢y, ﬂ(x, 0) =-C

are also both magnetic surfaces, and that ¢, and ¢, are given
constants. Then, at ¢ = 0, the intersection of the two
surfaces is along a magnetic line of force. The material

surface
ax, 1) = ¢y,

which initially coincided with the surface a(x, 0) = ¢, and
moves with the fluid velocity, is also a magnetic surface for
all time; the same being true for another moving surface
characterised by f(x, ¢) = ¢, which initially coincided with
B(x, 0) = c,. Hence the intersection of these two moving
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surfaces always coincides with a magnetic line of force as
shown in Fig. 2.

These results will now be used to enable simple
derivations of some basic properties of the magnetic field.
For example, let us assume that the fluid is incompressible
and, consequently, that each closed surface moving with the
fluid preserves its volume for all time. In particular, if we
think of a volume with a cross-section corresponding to the

MAGNETIC LINE OF FORCE.

Fi1G. 2.

area ABCD on the magnetic surface a(x, ) = ¢, of Fig. 3
and such that its thickness normal to a = ¢, is vanishingly
small, this result implies that the cross-sectional area ABCD
is invariant as the surface moves and deforms in space.
Consequently for a motion in which such a fluid volume
elongates in the direction of the magnetic lines of force it
follows that the separation 4B of the lines of force bounding
the volume must decrease as they move to A’B’ (see Fig. 3).
However, since lines of force can never intersect, the
magnetic flux through the end of the volume that is traversed
by AB must remain constant, and so it immediately follows
that the intensity of the magnetic field increases as the
result of such a distortion of the lines of force. This can be
expressed in an alternative way by saying that the motion
of the fluid element as it stretches itself along the lines of
force increases the local magnetic field.
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In order to derive a more general property than this we
now consider the two further material surfaces specified by

oa+da = Cy +5Cl, B+5ﬁ = Cz+502
which are neighbouring to the material magnetic surfaces

“(x9 t) = €y, B(x’ t) = C2,

b’
-

R C
alx, 1) =C; a(x, t) \j}

Fia, 3.

respectively. The intersection of these four surfaces defines
a narrow rectangular tube and, as we have seen, the lines
of intersection of the surfaces all lie along the magnetic
lines of force ruling the four surfaces. Consequently the
magnetic flux passing through this narrow rectangular tube
which moves with the fluid is conserved for all time. Ata
time ¢, let us consider a point Py(ro, #,) located on one of
the four magnetic lines of force determined by the corners
of the rectangular tube and introduce a surface element
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vector dS|, at the point P, corresponding to the cross-section
of .the tube at P,. Now suppose that at a later time ¢ the
point P, moves to a point P(r, f) and that a point

Py(ro+dry, ty),

neighbouring to P, and located on the same line of force as
Py, moves to a point P'(r+dr, ), neighbouring to P and

P,

FiG. 4.

located on the same line of force as P. At time ¢ we define
the surface element vector dS at P corresponding to the
cross-section of the tube at P and parallel to the magnetic
field at P. .

Denoting the displacement vectors P,P and PyP’ by ¢
and &, respectively, it is clear from Fig. 4 that

dr = dry+& —¢&.

To see the relationship of &'(ro +dry, to) to E(ry, 5) we need
only apply Taylor’s theorem to &’ to obtain

E(ro+drg, to) = &(ro, to)+(dro.grad)é.
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Combining this result with the previous one then gives the
relation
dr = dry+(dry.grad)é. (10.12)

Now the fact that by construction H, dS and dr are all
parallel to one another enables equation (10.12) to be
rewritten in a more interesting form. To see this let # be a
unit vector parallel to this triad of vectors and write
equation (10.12) in the form

drp = dry(fo+ (P, .grad)é). (10.12%)
Using the frozen-in condition we have
H.dS = H,.dS,, (10.13)
whilst from the mass conservation law we have
pdr.dS = podry.dS,, (10.14)
from which it follows that
H _ _H
pdr  podro’

Using this result in equation (10.12’) to eliminate dr and dr,
gives

H_ 1 H,+H,.gad) &). (10.15)

V]
This equation is the general solution of equation (5.1°). If
we divide equation (10.15) by ¢ = ¢—1¢, and take the limit
as 6¢t—0 we find that

—Q(E> = 1(H .grad)v. (10.16)
Dt\p/ p

The property previously derived in connection with
Fig. 3 for an incompressible fluid results immediately
from equation (10.15), for when p is a constant equal to
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po it follows at once that H increases when the displace-
ment ¢ is such that the fluid stretches itself along the lines
of force.

Another property resulting directly from equations
(10.12) and (10.15) is that if dr=dr,, so that (H,.grad)v=0,
then H/p is constant along the path of the fluid element.
For example, if the magnetic field is in the z-direction and
all other quantities are independent of z, then H,[p is
constant along each path of a fluid element.

Now the equation of motion (6.3) of the fluid becomes

p Do
Dt
when we assume that f® = 0, while for a perfect fluid

{ =n=0 and so, combining equations (6.2) and (7.6)
with (10.17) gives,

2

p2% = _grad(p+ M) & A (H.gradH. (10.18)
Dt 8n 4z

This equation shows that the force exerted on a fluid

element is determined by the total pressure p*, where
2

p*=p+ ,ugi’ and by the magnetic force ‘{i (H.grad)H.
n n

When, in the case of the magnetic field parallel to the
z-axis that we have just examined, there is a functional
relationship between H, and p at some initial instant the
problem is reducible to the conventional fluid dynamic case
and the effect of the magnetic field is simply to modify the
compressibility of the fluid.

Analogously to the case of fluid dynamics,} in which
the velocity of propagation a of an infinitesimal disturbance
(sound speed) is determined by the expression

TARE S A (10.17)

a’? = a—p, (10.19)
op
t See Rutherford, Fluid Dynamics, 1959, p. 20.
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so the velocity of propagation c* of an infinitesimal disturb-
ance in this case will be

*
(c*)? = %”— =a’+b? (10.20)
p

where a is the ordinary speed of sound and where b is
defined by the expression

2
p2 = M OH: (10.21)
8n dp
In the simple case in which H,/p is everywhere constant
it is easy to see that L
2
b= \/ #H; (10.22)
4zp

This velocity is called the Alfvén velocity and will be discussed
in the following section.

§ 11. The Alfvén wave. One of the most conspicuous
features of magnetohydrodynamics is that even in an in-
compressible inviscid fluid the basic equations admit
solutions representing waves. The existence of such a wave
was predicted by H. Alfvén in 1942 and has been confirmed
experimentally by Lundquist and Lehnert. The wave has a
number of remarkable properties entirely different from
those of sound waves and is called the Alfvén wave.

Let us assume that initially a fluid at constant pressure
is in equilibrium with a uniform magnetic field H, oriented
in the positive z-direction, with H, = Hyk where k is the
unit vector parallel to the z-axis. Suppose now that the
motion of the fluid occurs such that a narrow strip, bounded
by two magnetic lines of force L, and L,, is deformed in the
manner illustrated in Fig. 5 so that the shaded portion 4 is
transformed into the shaded portion A4”.

As was remarked previously, in an incompressible fluid
the magnetic field strength will increase as we move from
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Ato A’ due to the stretching of the magnetic lines of force.
Moreover, if the total pressure at A’ is still balanced by that
of the surrounding region, then the force acting on the fluid

Fe. S.

in region A’ becomes only the magnetic force term of
equation (10.18) given by

£ (H.grad)H, (11.1)
4
where H is the magnetic field strength at 4’. By setting
H = Ht where t is the unit tangent vector to a magnetic
line of force, expression (11.1) may be expanded to give

4ﬁ (H.grad)H = t(H. grad)H+ H*(t . grad)t.
T

Now the expression (¢.grad)¢ is simply the rate of change
of the tangent vector ¢ along the line of magnetic force and,
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by simple geometrical considerations, may be shown to be
equal to n/R where n is the principal unit normal to the line
of magnetic force and R is its radius of curvature. Accord-
ingly then, we may write

2
A (H.grad)H = - Je(H . grad)H+n 2
4n iz R

which, since H? is always positive, shows that the force acts
in a manner to restore the fluid at A’ to its original position.
So the narrow material strip bounded by the magnetic lines
of force, or a magnetic line of force itself, resembles a
string subjected to a tension given by formula (11.1) which
vibrates around its equilibrium position. Under the
assumption that all quantities are independent of x and y
and are functions only of z and ¢ the above reasoning may
easily be given mathematical expression.

We shall consider displacements only in the y-direction
and express the magnetic field and the fluid velocity in the
form

H= Ho'l"h(z, t)j

v = v(z’ t)j b

where j is the unit vector in the y-direction. Then, consider-
ing a small displacement £(z, ) in the y-direction of a fluid
element, by equating forces on the element and retaining
only first order terms we may write the following equation
of motion,
0*¢ _ uH, oh
P o*  4n 0z (11.2)

Now, for an incompressible fluid, it follows at once from

equation (10.15) that h =H°Z—é and so equation (11.2)
zZ

t See Rutherford, Vector Methods, 1954, p. 19.
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becomes
92 é _ pH} H’ 52 C
o 4mp 0z°
This equation is the well-known wave equation{ and

shows that the Alfvén wave is a transverse disturbance
propagating along the magnetic lines of force with the

(11.3)

2
Alfvén velocity b = #Ho .
4zp
. o¢ o¢
From the expression h = H,, % and the fact that v = 5
z
we at once have that
oh ov
=H, — 11.4
ot o (14
while equation (11.3) may be written in the form
ov _ pH, oh (11.5)
ot 4np oz

Multiplying equation (11.5) by i‘,\/47tp/;t and adding it to
equation (11.4) then gives

oh ok _, [Amp (o0 0 ) (11.6)
ot 0z u \ot 0z

dh _ 0h 4ok Oh dz

dt o0t 0z dt

ow,

. . dz .
which, as the velocity of wave propagation 5 in the z
direction is equal to b, shows that

dh _ oh 6h
dt 6t+ oz’

1 See Coulson, Waves, 1949, p. 5.
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.. . d . . .
A similar result is true for d—v allowing us to re-write equation
z

(11.6) in the simple form

i _, fi s
- podr

Integrating, we find that
\/ 4rp (11.7)

In laboratory experiments using liquid mercury, because
of the small conductivity and the viscosity, such waves
attenuate rapidly and are difficult to observe. To illustrate
the velocity that may be expected, consider a field of 103
gauss, taking p = 1 and the density of mercury as 13-6
gm/cm3. Then we see from this last result that the Alfvén
velocity would be several kilometres per second. However,
when the conductivity is high the waves are readily observ-
able as was the case in a series of elegant experiments on
Alfvén waves in plasmas carried out at the Berkeley
laboratories in California.

§ 12. Examples.}

1. A vector a is said to be solenoidal when diva = 0.
Prove that when the current vector j is solenoidal all
currents must flow in closed loops.

2.1* It is a postulate of the special theory of relativity
that for a frame of reference O'{x’, ', z’} moving with
constant velocity V, say, along the x-axis of another frame
O{x, y, z}, the spatial coordinates and times in the two

+ Examples 2 and 3 indicate the basic ideas underlying the
relativistic transformation laws for the vectors E and B. For more
information reference should be made to: Rindler, Special Relativity,
1960.

1* See explanation of asterisk in paragraph five of the Preface.
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reference frames are related by the Lorentz transformation

- x—Vt Y=y, 2=z, t = t—xV/c2
(1=V?cH¥ ’ T A=vi eyt

Denoting differentiation with respect to time in any given
system of coordinates by a dot show first that

V dx Vx
—_———— 1_ —_
ar _ ctdt c?
dt  (1-V2%cA)  (1-V?H)
Hence show that velocities transform according to the laws
' ux_V u = uy(l_Vz/cz)* u = uz(l—Vz/cz)i
—u Ve 1—uVjc?* * F 1—uV/c?

where u, = % = dx/dt and u,=3x =dx'[dt' are the
x-components of the velocity in the reference frames O and
O’, respectively; the other components being similarly
defined. Show also that the inverse transformations for
coordinate variables and velocities may be obtained by
interchanging primed and unprimed quantities and by
reversing the sign of V. Setting u? =ul4u? +u and using
the inverse transformation law for velocmes prove that the
Lorentz contraction factor (l —u?/c?)?* for an object moving
with velocity u relative to a given reference frame transforms

according to the law
121,2\% 2/1.2V%
(1—u2/c2)* _ (A —u"?*/c*y*(1=V?[c?)
L+ulV/c?
and hence, since the mass m of a particle moving with
velocity u and having a rest mass m, is
m = mo|(1 —1?[c?)?,
that mass transforms according to the transformation
_m'(1+uV/c®)
(1=V?[*)

b
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3.* It is postulated in relativistic electrodynamics that
the Maxwell field equations should have the same form in
all sets of coordinates which are in steady motion relative
to one another and that the transformations and inverse
transformations of electromagnetic quantities should also
be symmetrical apart from the sign of the relative velocity
of the two frames. The following transformations proposed
by Einstein for a vacuum field in which the current vector j
has been identified with a charge of density 4ng moving with
velocity u possess all these features:

E+ LB, E- B

4 C
E,=E, Eyj=— % E =— £ _
* Y=Vt (1-V?/c?)?
B~ Y E B+ LE

B,=B. B ¢ ¢

e e e
and

o, (l+u;V/c2)

S A=V

Use the results of the previous example to show that

i _ 1— ul2 /02 3

q 1—42 / 2 )’
and hence that the electric densities in the two systems are
inversely proportional to their Lorentz contraction factors
with the result that the total charges e and e’ in the two
systems are identical.

By defining the force F acting on a particle of mass m
moving with velocity u as

=4d =4 (__mou
F=a™=2 ((1 —uz/cz)*)
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show that the components of force transform according to
the law

u,V'F, + w,V F,

F.=F.+ :
2+u,,V A +ulV

2 21 .2\%
c*(1=V?*[c*)*F,

F,=t
Y +ulV

A(1=V?/c*)*F;
Fo=——
c+ulV

Now, by considering a charge e moving in reference frame
O with velocity V along the x-axis so that u, =V,
u,=u, =0, we have the result that e appears as a
statlonary charge in reference frame O’ and, consequently,
that the force acting there has components

[N oY [N} Y] AN} nY ]
F,=¢'E,, F,=¢'E, F;, =¢'E,.

Hence, since it was established that e’ = e, use the trans-
formation law for force to prove that

F,=¢E,, Fy=e (E,-— 1 u,B,), F,=e (E,+ 1u,‘B,).
c c

Consequently, by allowing the x-axis to be arbitrarily
oriented, prove that the Lorentz force F acting on a unit
charge moving with velocity u is given by

F=E+ 1uxB.
c

4. Show, by making use of the expansions of
div [H x curl H], div [H x(vx H)],
or otherwise, that the scalar product of H and the equation
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for the magnetic field

2
=curl (o xH)+ —*— V?H
4rnuc

may be written in the form

2
{-‘ﬂ =v. (churlH)— —
ot /w

2
~div [Hx(v x H)— —*— Hxcurl H].
4nuc

5. By integrating the final result of Example 4 over a
volume V bounded by a fixed surface S show that

2 *2
3[ Ef[—dV=‘—‘j v.(ij)dV—deV
ot)y 8n cly o

- £ Hx(va)-——-—churlH .ds
4n Js 4npc

and hence, when the field is confined to a volume V,
contained in V, that

2 22
_a_J ‘i’idV=’if v.(ij)dV—J]—dV.
ot Jy 8n cly v o

6. Using the summation convention whereby a repeated
suffix in any expression implies summation with respect to
that suffix over all the possible values assumed by the
suffix, show that the ith component of grad T%", defined
to be aTM|0x,, is

(m)
O _ 0 4y, 1+ L dive,
axk 6x; axi
where
- oy, 60
T = —P5:k+’7< ~i

Oy div o ) +{dy div v.
%, | Ox, —%0; di ) {0
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Hence show that the equation of motion for the flow of a
viscous electrically-conducting fluid is

p2 = _grad p+ Ljx HnV
Dt c
+(C+%']) grad div v+f(ex)‘
7. The total energy U per unit volume occupied by a

pH?

fluid is given by the expression U =}pv?+ . + pe.
T

Show that U satisfies the energy conservation law

ou .
— = —divyg,
ot v

where the energy flow vector g is given by

g =poGoi+e+pr)+ L IHx(wxH)— —— Hxcurl H
4n 4nuc

3

Z (gii + g::" —25, div v) vie,—y grad T,
= k

the notation bemg that of § 8.

8. Defining the flux ¢ of a vector @ through a surface S
bounded by a closed curve I' moving with velocity v(x, 7)
to be

¢=j Q.4ds,
N

prove, by arguments similar to those used in § 10, the
following integral rate of change theorem

D¢ _ 0 .
o J;l:@t +vdiv @+curl(Q xv)].dS.

Then, by identifying @ with the magnetic field vector H,
obtain the * frozen in ” condition for a perfectly conducting
fluid.
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9. Show by combining the magnetic field equation for a
perfectly conducting inviscid fluid,

QEI = curl (v x H),
ot

and the equation of continuity

adp . .
= +div =0,
5 O (pv)

that

D(H\_1
D—t (;') = » (H. grad)v. (A)

Then, defining the vorticity e by the relationship @ = curl v
and using the Cartesian coordinates O{x,, x,, x,} with the
unit vector e; associated with x;, make use of the de-
composition

13 v, Oy ov, O,
— H(—= -2 +H (= +
2p k;l { (axk axi) <ax,‘ ax,-

of the ith component of the right-hand side of (4) to prove

that
3
B g =i wa'l" z S,'kae, >
Dt\ p 2p k=1
60, a
wheie Sy = + —* ) iscalled the deformation tensor of
0x,‘ ax,
the fluid.

10. Show that for an incompressible ideal fluid of
density p, in a conservative force field with scalar potential
¥ (acceleration a experienced by a unit massis @ = —grad y)
the equation of fluid motion takes the form

2
Po Do _ —grad| p+ HH +po¥ ) + £ (H.grad)H.
Dt &n 4n



60 MAGNETOHYDRODYNAMICS §12

Assume that the fluid is subjected to a uniform magnetic
field H,, and orient the coordinate axes so that H, = H,k,
where k is the unit vector in the z-direction. Show that if a
small disturbance producing a fluid velocity v results in the
magnetic field becoming H = H,+h, then the equations
for the magnetic field, for the fluid motion and for mass
conservation take the form

Ok _ 00
ot oz’
QB-—-——lgrad ‘u°h+po¢+”H° +£&%
ot Do 4n 8n 4np, 0z
and
dive =0,

when terms of the order of 2, h.v and v? are neglected. By
using the results div v = div H = div h = 0, show that

U= p+”H° h+ o+ =2 HH§

4n 8n
is a harmonic function. Hence show that since U is
harmonic and bounded everywhere and has no singularities
it must be a constant.t Finally, make use of this result to
show that the equations for v and h simplify to the following
equations

v==%t [T h
4"Po
Oh _ pHg 0%
o 4mp, 9z%
o*v _ pH§ 0%
ofr  4np, 0z%

t See, for example, the theorem on p. 111 of Phillips, Functions of
a Complex Variable, 1958.
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describing the propagation of a general Alfvén wave in
which the small disturbance vectors k and v travel with the

2
Alfvén speed b = \/”—HO
47'5[)0

11. By definining the vorticity @ by the relation
o = curl v, prove that in an incompressible conducting
fluid of density p, subject to a uniform magnetic field Hy,
both w and the current j propagate with the Alfvén speed.
Prove also that
j=%¢ LAY
4npu



CHAPTER 11

MAGNETOHYDRODYNAMIC BOUNDARY
CONDITIONS

§ 13. General considerations. Problems are frequently
encountered in magnetohydrodynamics in which either a
physical boundary or an internal interface between fluids
occurs across which different solutions must be joined. In
such circumstances the physical situation is idealised by
supposing a geometrical surface to exist between the two
regions in question across which the field variables are
related by laws which allow special kinds of discontinuities
to take place in certain field variables when crossing the
surface.

Although the notion of a discontinuity in the field
variables is intuitively obvious it is nevertheless worth while
defining these ideas a little more precisely. The most
obvious type of dicontinuity occurs when an actual jump
takes place in the value of a field variable when crossing a
discontinuity surface D. Thus, if P; and P, are points on
opposite sides of D, we define the jump AF in F say, at a
point P of D to be

AF = lim {F(P,)—F(P,)}. (13.1)
Py, P2 P

This type of jump is a simple discontinuity in F and if

we require that AF—0 as P,, P,—P we arrive at the usual

form of the definition of a continuous vector function F

of several variables. A similar definition applies to a

62
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scalar function F as may be seen by considering the scalar
components of (13.1). We shall see that discontinuities
of this type, frequently called strong discontinuities, occur
in the theory of magnetohydrodynamic shocks.

A weaker form of discontinuity in which the functional
value of F itself is continuous across D but where some
derivative of F may be discontinuous is also of very real
interest. Discontinuities of this type, frequently called
weak discontinuities to distinguish them from the shock-like
jump discontinuities, will be of fundamental importance
when we consider the theory of characteristics and its
applications.

We remark that one form of strong discontinuity that is
implied by definition (13.1) is that for a vector function F,
the normal component of F may be continuous across D
whilst the tangential component is discontinuous, or
vice versa. This is a form of strong discontinuity that often
occurs in boundary conditions.

We may, for example, be considering the interface
between a fluid and a moving insulating wall, or perhaps the
interface between a fluid and a vacuum. In the first case,
an obvious requirement on the velocity vector v of the fluid
and the velocity vector u of the insulating wall is that if the
fluid is to remain continuous up to the wall without the
appearance of voids, and hence cavitation is not to take
place, they must always have identical normal components
of velocity. Denoting the normal to the wall by n, this
fluid boundary condition can be expressed mathematically
by the requirement that

n.(v—u) =0 (13.2)

at all points of the wall. Also, if the fluid is viscous and
non-cavitating, we know from observation that the fluid
will stick to the wall and so for a viscous fluid we require a
stronger boundary condition that (13.2); namely that
v = u at all points of the wall. Obviously condition (13.2)
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is also the condition that must be satisfied at an internal
fluid-fluid interface in a non-viscous fluid.

The nature of the electromagnetic boundary conditions
to be applied at discontinuity surfaces is less obvious, as is
also the case in the second example, for there, although the
fluid domain is bounded by a vacuum, this need not be the
case for the electromagnetic field variables.

We shall examine the fluid and electromagnetic dis-
continuities occurring in magnetohydrodynamic shocks
when we discuss shock phenomena and so now we shall only
discuss the discontinuities experienced by the electro-
magnetic field variables at interfaces and boundaries.

So far the form in which we have displayed the electro-
magnetic field equations has been appropriate only when
the field variables have been differentiable. At any points of
discontinuity of the field variables, such as the boundary
between a conducting wall and a fluid, this assumption of
differentiability is violated and the electromagnetic differ-
ential equations cease to be valid. To overcome this
difficulty it will be necessary to re-formulate the relevant
equations in a form which permits such discontinuities to
occur and then, by considering these equations in regions
immediately adjacent to the boundary, to obtain boundary
conditions which are compatible with the solution elsewhere
in the fluid. Since integrals involving discontinuous
functions present no difficulty we shall in fact transform
certain of the pre-Maxwell equations into their so-called
integral form when, as we shall show, the results may be
used directly to obtain the desired boundary conditions.

First, though, we must take note of the fact that the
electromagnetic field variables in magnetohydrodynamics
are governed by the pre-Maxwell equations and not by the
full Maxwell equations from which it is customary to
deduce boundary conditions for classical electromagnetic
phenomena. Pausing then for a moment to examine the
pre-Maxwell equations, we see that equation (2.2) is of
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fundamental importance in that it provides both the link
between the vectors E and B and the only mechanism by
which time variation may enter explicitly. Furthermore, an
examination of the summarised -electromagnetic field
equations of magnetohydrodynamics contained in § 9 shows
that it is H rather than E that is fundamental. This follows
from the fact that when H and v have been determined from
the combined electromagnetic and fluid field equations, then
the electric field vector, the charge and the current may be
immediately obtained from equations (3.10), (4.3) and (2.9).

One of the differences between the pre-Maxwell
equations and the Maxwell equations has already been
demonstrated in § 2, when it was shown that a surprising
consequence of the pre-Maxwell equations was that no
electric charge can exist in a conductor which obeys Ohm’s
law and is at rest. There are indeed other consequences of
these equations which result in the familiar boundary condi-
tions of classical electromagnetic phenomena not being
entirely appropriate as boundary conditions for the pre-
Maxwell equations. Their deficiency stems from the fact
that the field variables in the pre-Maxwell equations are
linked in a rather different way from those in the Maxwell
equations. The result of this is that although physically it
may often seem reasonable that the pre-Maxwell equations
should approximate the Maxwell equations, mathematically,
when classical electromagnetic boundary conditions are
imposed on the pre-Maxwell equations the problem can
become overspecified. The consequences of the over-
specification are generally that a natural conservation law
will be disobeyed or that a rapid transient behaviour will
be inaccurately described since then condition (I) will be
violated.

§ 14. Integral form of the pre-Maxwell equations. Since
the discontinuity surfaces which will concern us may be
either stationary or moving we shall derive the integral form
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of the pre-Maxwell equations in a form which is appropriate
to either type of surface. We begin then by considering the
total rate of change with respect to time of the surface
integral of H over a moving geometrical surface S, (f), with
vector surface element dS;, moving with velocity # and
bounded by a moving piecewise smooth closed curve I';(7)
with vector line element dr. Thus, in physical terms, we are
seeking the mathematical form taken by Faraday’s law
of induction f when defining the electromotive force
(e.m.f.) in terms of the rate of change of the magnetic flux
through a moving and deforming surface.

To do this we apply the theorem expressed in Example 8
of § 12, to the magnetic flux @(#) defined, as in equation
(10.1), by

(1) = H.ds,
. S1(1)
to obtain

b H.ds, =j {QI—I +u divH+curl(H><u)}.dS,.
Dt Js, 10

(14.1)

If, now, we make use of the pre-Maxwell equations (2.2)
and (2.3) this becomes

DI goas =- if curl (E+ 1ux3>.dsl.(14.2)
Dt Js,m B s 4
Applying Stokes’s theorem to equation (14.2) then gives us
the integral form of the pre-Maxwell equation (2.2) which is
in fact simply the desired statement of Faraday’s law of
induction for a moving surface, namely,

1
DI m.as =- i§ <E+ ~u xB) .dr.(14.3)
Dt s, B Jrm ¢

t See Coulson, Electricity, 1951, §§ 91 and 93.
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When u = 0 this reduces to the usual expression of
Faraday’s law of induction

&m£=§ Edr=—12| B.as. (44
r, ¢ Ot Sy

We shall also require the integral form of equation (2.3)
expressing the solenoidal property of the magnetic induction
vector B. If we consider a volume V(7)) with volume element
dV bounded by the closed moving surface S(#) with surface
element dS, then we may write

j div B dV =0. (14.5)
V(1)

Applying the Gauss divergence theorem to equation (14.5)
then gives us the desired integral form of pre-Maxwell
equation (2.3),

B.dS=0. (14.6)
s
It is from these two equations that we shall now obtain
the compatible boundary conditions for a general moving
discontinuity surface.

§ 15. Electromagnetic boundary conditions. To see how
equations (14.3) and (14.6) enable us to determine the
discontinuity conditions across a discontinuity surface we
now proceed as follows. Consider a moving surface D(?)
across which the field variables may possess discontinuities
and draw an arbitrary infinitesimal plane rectangular loop
I'y(¢) around a point P of D(f) in such a manner that the
normal b to the plane of the loop I'y(¢) is tangent to the
surface D(f) at P. Then, denoting the tangent vector to
D(r) which is normal to b by ¢ (see Fig. 6); the normal n
to D(r) lies in the plane of I'y(¢) and is given by the relation
n=txb. Here t and b may be any orthogonal unit
vectors in the tangent plane at P, but of course n is unique
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apart from sign. We shall denote the region into which n
points by (+) and the region on the other side of D(¢) by
(=). The loop I'((¢) is assumed to be oriented in such a
manner that its short sides of length & are parallel to n and
its long sides of length / are parallel to ¢.

FiG. 6.

We now identify the arbitrary piecewise continuous loop
() of equation (14.3) with the small rectangular loop
I';(#) that we have just defined and the S,(¢) with the small
plane area contained by I';(s). Furthermore we shall
suppose that I';(¢) always moves with the discontinuity
surface D(#) in such a manner that it preserves its orientation.
Vector u becomes the velocity of the discontinuity surface
D(#). Under these conditions equation (14.3) can then be
approximated by the expression

B(H.b)él = f[E-;- }uxB:l.tl
Dt pl e

- c—{<E+ 1uxB) .n— (E+ 1uxB) .n }5, (15.1)
# c P, 4 Py

where [X] = X* — X~ signifies the jump in quantity X
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across D(#), and where (Y)p, signifies the average value of
Y at P;. So, dividing by / and letting 60, we find that

provided E, B and DBt (H . b) remain bounded,

[E+ 1uxB].t=O. (15.2)
c

As t is an arbitrary tangent vector at P it follows at

once that
[(E+ 1u><B>:| =0, (15.3)
¢ t

where the suffix ¢ denotes the tangential component. In
words this says that the tangential component of the vector

E+ !u x B is continuous across the discontinuity surface

c
D(t). When u = 0 this reduces to the familiar statement
that the tangential component of the electric field is con-
tinuous when crossing a fixed discontinuity surface.

It now only remains to use equation (14.6) to deduce the
discontinuity conditions for B normal to D(¢). To do this
we identify the surface S(¢) of equation (14.6) with the
surface of an arbitrarily small cylindrical volume V()
which is constructed so that it encloses a small part of the
discontinuity surface D(#) and always moves with D(z).
We shall suppose that the axis of this cylinder is normal to a
point P of D(f) and that the end faces are parallel to the
tangent plane to D(¢) at P.

Equation (14.6) may then be approximated by the
expression

0= f B.dS =B dSV4+ B 4S8
s

+contributions from the sides of the cylinder (15.4)
1 See Coulson, loc. cit., p. 58.



70 MAGNETOHYDRODYNAMICS §15

where, again, (+) and (—) signify values on opposite sides
of D(f). Now, since dS*) = —dS‘™) = ndS, where n is
the normal to D(7) at P and dS is the area of the cylinder end,
as the cylinder height shrinks to zero equation (15.4)
becomes
[n.B]dS = 0. (15.5)
Because the cylinder was arbitrarily located on D(¢),
and had an arbitrary cross-sectional area dS, this result at
once implies the following boundary condition on B,

namely
[n.B]=0. (15.6)
Following the notation that is often used, whereby the
normal component of a vector is denoted by the suffix #,
this result simply says in physical terms that the normal
component B, of vector B is continuous across a dis-
continuity surface, or that
[B,]=0. (15.6")
When, for some reason, the normal component of B
vanishes everywhere along the discontinuity surface the
electric boundary condition (15.2) can be slightly simplified

as follows. Writing the vector E+ IEu x B as the sum of

tangential and normal components, and using result (15.3),
it is easily seen that the electric boundary condition is
equivalent to

nx[E+-iuxB]=0.

Expanding the triple vector product in this equation and
using the condition n.B = B, = 0 then gives

nx[E] = % [(n.u)B].

However, it follows from equation (13.2) that n.u is
continuous across the discontinuity surface and so this may
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finally be written in the form
nx[E]= L (n.u)[B]. (15.7)
¢

Let us again consider Fig. 6 and this time form the line
integral of H around I'; when, by using Stokes’s theorem
and equation (2.9), we find that

ff;H.dr:‘E j.ds,.
ry ¢ Js,

By essentially the same arguments as were used in deriving
the electric boundary condition we then readily arrive at the

result
nx[H] = lim (j5).
C é-0

When the conductivities on adjacent sides of the dis-
continuity surface are finite j remains finite and so, in the
limit as § -0, we obtain the boundary condition

nx[H]=0. (15.8)

However, when one of the regions adjacent to the dis-

continuity surface is a perfect conductor, j may possess an

infinity such that js=Ilim (j§) is finite and defines the
-0

density of the surface distribution of current. The general

discontinuity condition for the tangential component of H
thus becomes

nx[H] = ‘13 is. (15.9)

Special cases arise when one of the regions adjacent to a
discontinuity surface is either a perfect conductor (¢ = o0)
or a perfect insulator (¢ = 0). The case of the perfect
conductor is particularly simple for then, instead of it being
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necessary to obtain solutions in both the perfect conductor
and the fluid which must be joined in a suitable manner
across the interface, the solution in the perfectly conducting
region may be ignored and replaced by a simple boundary
condition to be obeyed by the fluid on the physical
boundaries of the conductor. For a perfect conductor
moving with velocity w, say, Ohm’s law which is expressed
by equation (3.10) takes the form

E+ lwxB=0. (15.10)
c

It is obvious from this result that a perfect conductor is
characterised by the physical requirement that there should
be no tangential electric field experienced at the surface
with respect to a reference frame moving with the con-
ductor. A consequence of this result which is implied by
equation (15.2) is that the tangential surface component
of the electric field in the fluid must vanish. Accordingly,
at the boundary of a fluid moving with velocity v and a
perfect conductor moving with velocity u, we must clearly
have the electric boundary condition

nx(E+1va)=0 (15.11)
¢

and the fluid boundary condition
n.v=n.u. (15.12)

Now, referring back for the moment to Faraday’s law
of induction (14.3), we see that the velocity u of the dis-
continuity surface I'y(f) appears only in the form of the
triple scalar product u x B.dr = dr Xu.B, thus showing
that it is in fact only the component of u that is normal to
I';(¢) that really appears in the result. Because of this
conclusion and our choice of the limiting form of I';(?)
when deriving the electric boundary condition, we may
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conclude that equation (15.11) depends on n.v only.
Expanding the triple vector product in equation (15.11) and
examining the terms then shows that the compatible
boundary condition for B,, in order that the result is
independent of n.v, must be

, = 0. (15.13)

We shall use this as the magnetic boundary condition on a
perfect conductor. A brief discussion of the form of the
boundary conditions when two perfectly conducting regions
are adjacent to one another is contained in § 36 (iii).

Condition (15.13), when used in conjunction with
equation (15.11) and the fluid boundary condition (15.12)
which is true for all non-cavitating fluids, allows us to
replace the fluid velocity v in electric boundary condition
(15.11) by the velocity u of the boundary itself. This gives
as the electric boundary condition for a moving perfect
conductor,

7 x (E+ L xB) =0. (15.14)
c

The use of these boundary conditions may be illustrated
by an example of considerable physical importance called
the magnetohydrodynamic free boundary problem. This
problem occurs in studies of high temperature plasma
containment by an electromagnetic field. In an idealised
form, it may be considered to involve study of the motion
of a perfectly conducting fluid, in which E = B = 0, that
is bounded by a vacuum region in which there is an electro-
magnetic field. When the interface has a surface charge the
electromagnetic field suffers an abrupt change across the
boundary and, if the configuration is stable, the plasma may
be confined within a region purely by means of the electro-
magnetic field.

The vacuum region surrounding such an electro-
magnetically confined plasma may itself wusually be
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considered to be bounded by a rigid perfectly conducting
wall. The appropriate boundary condition on the wall
may be derived from equation (15.14) and is

nxE = 0. (15.15)

The electric boundary condition here, which expresses
the fact that E is normal to the surface of the perfectly
conducting rigid wall, when taken in conjunction with
equation (2.2), immediately implies that on the wall we
also have

0B
n.— =0.
ot

When insulating regions occur within the flow pattern
of a conducting fluid it is not usually possible to replace
the combined problems of finding the solution within the
insulators and the solution in the fluid by simply specifying
boundary conditions on the physical extremities of the
insulators. It is easy to see from the summary of the
electromagnetic equations presented in § 9 that in an
insulating region we must require B to satisfy the equations

curlB=0, divB=0 (15.17)

and, in general, it is this solution that must be joined by
jump conditions to the solution in the fluid. However,
since our applications involving insulating boundaries will
be rather simple, these problems will not arise and so we
shall not examine this further.

At the surface of an insulator which is penetrated by the
magnetic induction vector B we shall take as our magnetic
boundary condition the requirement that the vector B itself
should be continuous across the boundary, that is that

[B]=o0. (15.18)

To see that this condition implies that the normal
component j, = n.j of the current vector vanishes at the

(15.16)



§15 BOUNDARY CONDITIONS 75

surface of an insulator, as would be expected from physical
considerations, we proceed as follows. Using equation
(2.9) and adopting the orthogonal coordinates O{x, y, z} at
an arbitrary point of the insulating surface with the z-axis
normal to that surface, we find that the jump in the normal
component j, of j across a boundary is

However, equation (15.18) implies that [B,] =0, from
which it immediately follows that

[j.]=0. (15.19)
Since j = 0 inside an insulator equation (15.19) reduces to
the obvious physical fact that j, = 0 on the surface of an
insulator.



CHAPTER 111

INCOMPRESSIBLE MAGNETOHYDRODYNAMIC
FLOW

§ 16. The equations of incompressible magnetohydro-
dynamic flow. We have already encountered one important
example of incompressible magnetohydrodynamic flow
when, in the first Chapter, we demonstrated the possibility
of Alfvén waves occurring in an incompressible perfectly
conducting inviscid fluid. This very special case of wave
motion will be examined in more detail in Chapter V when
more general types of magnetohydrodynamic waves will be
studied and some of their fundamental properties will be
derived. However, before proceeding with a general study
of waves in a perfectly conducting inviscid fluid, let us first
examine some of the simpler types of flow that can occur in
a fluid which is both incompressible and viscous.

Two distinct cases of incompressible flow should now be
clearly distinguished and to do this we must consider the
continuity equation (6.5) which, since p is independent of ¢,
becomes

(v.grad)p+pdive = 0. (6.5)

When p is homogeneous, and so has the same constant
value throughout the fluid, this reduces to the familiar
incompressibility condition

div v = 0. (16.1)

If, now, we define a streamline to be a line in the fluid with
the property that any tangent to a point on the streamline

76
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determines the fluid direction of motion at that point then,
when p is constant along a streamline, we must have
(v.grad)p = 0. (16.2)
Using this result in equation (6.5") shows that when p is
constant along a streamline we again obtain div v = 0.
The latter case occurs when the density p has different but
constant values along different streamlines. The former
occurs when p is homogeneous and so has the same constant
value throughout the entire fluid.
If we assume that there are no external forces acting, and
hence that f® = 0 then, using equation (16.1), the
equation of motion (7.5) becomes

p&: = —grad p+ X j x H+nV?».
¢
Using equation (7.6) which gives an alternative form of the
electromagnetic force H jxH we finally arrive at the
¢

equation

2
P Do _ —grad|{ p+ i + £ (H . grad)H+nV?v. (16.3)
Dt 8n 4n
When the electrical conductivity is finite but variable the

equation for the magnetic field is again obtained - by
eliminating E between equations (2.2) and (3.10). However,
allowance must now be made for the fact that p, is a
variable, and so this time we proceed by first combining”
equations (2.9) and (3.10) to give,

—c—curlH=E+ lf(va)

4no c
from which, by taking the curl of this result and using
equation (2.2), it follows that

6_[{1 = curl (v x H)—curl (y,, curl H). (16.4)
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Expanding the first term on the right-hand side and
using equations (2.3) and (16.1) then gives the desired result

(%I = (H.grad)v—(v.grad)H—curl (,, curl H). (16.5)
0

The energy equation (8.2) is only significant in in-
compressible flow when the effect of a temperature dis-
tribution 7(x, 7) is to be investigated. When the temperature
effect is unimportant the equation may be disregarded.
For the moment we shall not concern ourselves with this
problem.

The equations to be considered in the incompressible
magnetohydrodynamic flow of a viscous inhomogeneously
electrically-conducting fluid are then as follows:

Condition for incompressibility:

dive =0, (v.grad)p =0. (16.1, 2)
Equation of motion:

2
p Do _ —grad | p+ il + £ (H.grad)H+nV?v. (16.3)
Dt 8n 4n

Equations for the magnetic field:

oH _ (H . grad)v—(v. grad)H — curl (3, curl H), (16.5)

ot
divH = 0. 2.3)

§ 17. Parallel steady flow. We now consider special
flows in which H and v are everywhere parallel, which we
shall call parallel flows and set

H = Jv. (17.1)

By considering the steady state form of the equations of
§ 16 above describing viscous incompressible flow we shall
now show how these equations may be reduced to a set of
equations appropriate to ordinary hydrodynamics without
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a magnetic field when the density and pressure are suitably
re-defined. In order that this property may be demonstrated
we first notice that it follows directly from equations (2.3),

(16.1) and (17.1) that
(v.grad)l = 0. (17.2)

Because the motion is steady, equation (17.2) may be
interpreted as a mathematical representation of the fact
that 4 is constant along a streamline, although it may, like
the density, have different values on different streamlines.

Introducing equation (17.1) into equation (16.5), which
determines the magnetic field, then gives

curl (5, curl (1v)) = 0, (17.3)
while the equation of motion (16.3) becomes
2.2
p(v.grad)y = —grad (p+ "—2—"-) + f‘-‘(v. grad)(Av) + 7V .
n 7

Expanding the second term on the right-hand side and using
equation (17.2) this finally becomes

2 2,2

(p— arl (v.grad)o = —grad ( p+ AT +7V3. (17.4)
4n 8n

If, now, we define a new density g and a new pressure j

by the expressions
. A

=p— == 17.5
p=r=" (17.5)
and
2.2
p=p+ BV (17.6)
8n
then, for parallel steady flow, equations (16.1) and (17.4)
become
dive=20 (16.1)
and

p(v.grad)v = —grad p+ny?e. (17.7)
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Equation (17.7) is exactly the steady state form of the
Navier-Stokes equation ¥ for an incompressible fluid
flowing with velocity ¢ and having density g and pressure j.
It follows directly from equations (16.2), (17.2) and (17.5)
that

(v.grad)p = 0, (17.8)

showing that g is constant along the streamlines.

So far the only requirement that need be satisfied by /2
is that it must be a constant along each streamline, other-
wise it is arbitrary. When the value of this constant is
specified on each streamline and suitable boundary condi-
tions are imposed equations (17.3), (16.1) and (17.1) must
then be solved in order to determine the incompressible
parallel steady flow of an electrically-conducting and viscous
fluid in terms of the new fluid density § and pressure p.
The value of A that is assigned to each streamline together
with the value of v determined by the problem can then be
used with equation (17.1) to obtain H.

We shall now examine two obvious cases in which these
equations simplify considerably and permit a direct analogy
with ordinary hydrodynamics. Since in ordinary hydro-
dynamics there is no analogue to equations (16.5) or (17.3)
determining the magnetic field, it follows at once that if we
are to succeed in our attempt to find reducible problems in
magnetohydrodynamic parallel steady flow we must seek
those solutions for which equation (17.3) vanishes identically.

Two possible cases occur. In one of these the fluid is
perfectly conducting and so 7, = ¢*/4nuc vanishes,
reducing the problem to the solution of the classical Navier-
Stokes equation for incompressible flow. In the second, #,,
and A are constant and

v = grad ¢. (17.9)
When v is expressible in this form in terms of a scalar
t Compare this result with equation (7.5).
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potential function ¢ the flow is called potential flow. In
this case equations (16.1) and (17.9) show that ¢ is harmonic
since it must satisfy Laplace’s equation

v = 0. (17.10)

Consequently a solution may be obtained by solving
equation (17.10) for the scalar potential ¢, taking into
account the specified boundary conditions of the problem,
and then determining v and H from equations (17.9) and
(17.1), respectively. When this has been done the pressure
may be found from equations (17.6) and (17.7). In the case
that 4 and #,, are homogeneous, we have thus demonstrated
that any arbitrary potential flow of an ordinary in-
compressible fluid in the absence of a magnetic field
provides a solution to the magnetohydrodynamic parallel
steady flow equations (17.3), (16.1) and (17.7).

The parallel steady flow of a perfectly conducting fluid
simplifies still further if the fluid is inviscid, for then the
only equations determining the motion are the in-
compressibility conditions

dive =0, (v.grad)p =0 (17.11)
and the equation of motion
p(v.grad)v = —grad p. (17.12)

These equations in fact describe the ordinary in-
compressible flow of a conventional fluid in terms of the
variables v, p and p. Indeed, by considering any classical
incompressible inviscid flow and identifying the velocity,
density and pressure with v, g and p, respectively, we can
derive a possible incompressible magnetohydrodynamic
flow in the variables v, p and p. We have already seen from
equations (16.2) and (17.2) that although p and A are
constant along a streamline they may be inhomogeneous in

T See Rutherford, Fluid Dynamics, 1959, p. 5 and Chapter 2, and
also Rutherford, Vector Methods, 1954, Chapter 7.
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the sense that they vary from streamline to streamline.
However, since it follows from equation (17.7) that g is also
constant along a streamline, p and A cannot both be
assigned arbitrary values independently of one another and
they are in fact related by equation (17.5).

Any inhomogeneity in A has the interesting consequence
that a mapping from a classical hydrodynamical potential
flow, for which g is everywhere constant and curl v = 0, to a
magnetohydrodynamic flow results in a flow which will, in
general, be inhomogeneous in p and such that curl H # 0.
This means that a simple classical fluid flow will generally
map into an interesting magnetohydrodynamic flow
whenever A is inhomogeneous. To see this we need only
refer to equation (17.5) and expand curl H using equation
(17.1) to obtain

curl H = A curl v+(grad ) xv = (grad A) x v # 0.

A further connection with classical fluid dynamics can be
obtained by using the vector identity
(v.grad)v = } grad v> —v xcurl v
to rewrite equation (17.12) in the form
p grad 1v?> = v xcurl v—grad p. (17.129)
Taking the scalar product of this equation with v and using
the properties of a triple scalar product then gives
p(v.grad)v? = (v.grad)p,
or, using the second equation of (17.11),
(v.grad)(3pv’+p) = 0. (17.13)
Consequently, along each streamline, we must have the

relation
1pv*+p = constant. (17.14)

Referring to equations (17.5) and (17.6) shows that equation
(17.14) may be written as

1pv*>+p = }pv®> +p = which is constant along a streamline,
(17.15)
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and in this form the result will be referred to as Bernoulli’s
equation for incompressible parallel flow.

When the fluid is perfectly conducting but the viscosity
cannot be neglected we are required to integrate equation
(17.7) subject to the incompressibility conditions (17.11).
This is a familiar problem of classical hydrodynamical
flow but a slight complication arises when we endeavour to
interpret it in terms of incompressible magnetohydro-
dynamic flow. The difficulty arises from the fact that the
fluid density § of the classical flow is related to 4 and to the
density p of the magnetohydrodynamic flow by equation
(17.5), and so can become negative for some values of p
and v. We now show how this trouble can be resolved when
A is homogeneous everywhere in the flow field.

We first write § in the form

2
F=p (1— %ﬁ), (17.16)

2
from which it is clear that p20 according as 1—4M 20,
np

12
and that § = 0 when 4}'—” =1. When g =0, it follows

np
from equation (17.1) that the magnitude v of the velocity
vis

372
b= ’;%. (A7.17)

For inviscid fluids v becomes the local Alfvén velocity
already defined in conjunction with equation (11.3).
Equation (16.1) again serves to determine the velocity while
equation (17.6) determines the pressure for, when g =7 =0,
it follows from equation (17.7) that j = constant.

In the general viscous case § 20 according as v is greater
or less than the local Alfvén velocity; that is according as
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2
v 'Zil- . Both of these cases may easily be reduced to the
np
solution of a classical steady viscous flow problem in the
absence of a magnetic field by the following simple change
of variables. We define a density p*, a pressure p* and a

velocity v* by the relations

pt =¢p, p* =ep+constant, v* = ev, (17.18)
uH?

where ¢ is the sign of the expression v— i It is then
np

easily seen that the density p* is always positive, as is the
pressure if the constant is suitably chosen. The vector v*
still satisfies the incompressibility condition

divo* =0, (17.19)

while p*, p* and v* satisfy the classical steady state form
of the Navier-Stokes equation for viscous incompressible

flow
pt(v.gradyv* = —grad p*+9Vi*,  (17.20)

which we have already encountered in equation (17.7).
Thus, once again, the problem of steady parallel magneto-
hydrodynamic flow has been related to a classical steady
state hydrodynamical flow.

§ 18. One-dimensional steady viscous flow. Other simple
magnetohydrodynamic steady flows arise from flow con-
figurations in which either one or two of the coordinate
variables involved are ignorable.f These flows have
considerable practical significance since they describe the
steady flow of fluids in ducts and pipes of constant cross-
sectional area where the flow is induced either by a pressure

T We use the term ignorable here in the sense that although we are
describing a real flow in three space dimensions, one or more of the

coordinate variables is absent from the mathematical formulation of
the problem.
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gradient along the duct or by the motion of the duct walls
relative to one another. We shall not attempt a discussion
of the general problem, being content instead to study the
class of flows that occur between two infinite parallel planes,
for which all flow quantities at any point in the fluid depend
only on the perpendicular distance of that point from one
of the bounding planes. Two special examples of this type
of flow known as Hartmann flow and Couette flow will be
examined in rather more detail since they have many useful
applications.

When entropy is constant along a streamline the fact
can be expressed mathematically by the relation

DS
2 = 18.1
Dt (18.1)
which, in the case of steady flow, becomes
(v.grad)S = 0. (18.2)

Flows for which this condition is satisfied are called
isentropic flows and it should be noticed that the constant
value of the entropy may differ for different fluid elements
on different streamlines. When the entropy has the same
constant value throughout the entire fluid the flow is said
to be homentropic. For the rectilinear flows which we shall
now study, the left-hand side of the energy equation (8.2)
vanishes and the resulting equation then serves to determine
the temperature distribution when the flow velocity and
magnetic field have been found.

In the case of rectilinear steady flow between two
parallel planes it is convenient to select a right-handed set
of Cartesian axes O{x, y, z} so that the z-axis lies parallel
to the flow velocity v, which, intuitively, we would expect
to be parallel to the plane walls of the duct. The x-axis will
be taken perpendicular to the duct walls. Thus we shall
consider steady flows in which only the z-component
v, = v,(x) of the velocity vector » is non-zero and where



86 MAGNETOHYDRODYNAMICS §18

the magnetic induction vector B = B(x) is constant along
streamlines. Of the equations describing the fluid motion,
equation (18.2) is satisfied automatically, whilst for a fluid
of constant density the continuity equation reduces to the
incompressibility condition divv = 0 given in equation
(16.1) and is satisfied identically in the flow under considera-
tion. For a viscous fluid in which the effects of external
forces may be neglected, the form of the equation of motion
with which we shall choose to work is the steady state form
of the equation displayed in (16.3). The current j can be
determined from equation (2.9) when H is known.

Because the flow is assumed to be steady, accelerations
do not occur and hence the fluid density is immaterial.
Differentiation of equation (7.5) with respect to z yielding
grad (0p/0z) = O shows that dp/dz is a constant which we
shall denote by —k,, a result we would expect since the
solution is unchanged by translations along the z-axis.

The x, y and z-components of the equation of motion
(16.3) then become, respectively,

2
0=-— i(p+ ‘ﬂ) + g %8 (83

0x 8n 4n " ox
0=H g 2 (18.4)
4n 0x
2
0=k + 2 gy, 00 (18.5)

4 T ox ox?’

The magnetic field is governed by equations (2.3) and
(16.5) which, when a fluid having constant electrical
conductivity flows in the duct, can be expressed in
component notation as

9% _, (18.6)
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and
0*H
X =0, (18.7)
ox?
2
o8, _y, (18.8)
oxX
0*H. d
m -z + — UZH‘ =0, 18.9
L ax( ) (18.9)

repectively. These equations simplify considerably on
inspection since it is at once apparent from equations (18.3)
and (18.6) that

H*>

p+ I;t— = l'(,V, Z)’

8n
where, for the moment, F(y, z) is an arbitrary function of
y and z. However, since by hypothesis p and H are in-

dependent of y, and ig=0 and % _ —ky, it at once
0z 0z

follows that the most general form of Fis F = k,—k,z,
where k, is a constant. Thus the pressure p and the
magnetic field H are related by the equation

P+ il =k,—k,z. (18.10)

Now it follows from equation (18.6) that H, = constant
= H,, say, which result, when used in equation (18.4),
shows that H, = constant = H,, say. This shows that
equations (18.7) and (18.8) are satisfied automatically and
so are redundant from the point of view of this analysis.

The original problem has now been reduced to the
solution of the simultaneous, linear, constant coefficient
(H, = H,), partial differential equations (18.5) and (18.9)
for v,(x) and H,(x). A specific flow will of course only be
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determined when the boundary conditions appropriate to a
definite problem have been imposed. Equation (18.10) can
then be used in conjunction with the solutions for v, and
H, in order to determine the pressure p.

The fact that we have succeeded in describing the
problem in terms of our initial heuristic assumptions regard-
ing the flow, without encountering incompatibilities amongst
the resulting equations, establishes the correctness of these
assumptions. Indeed, the compatibility of the resulting
equations is in fact closely related to the redundancy of
equations (18.7) and (18.8). This is so because we were
able to find solutions common to equations (18.4) and
(18.8) and to equations (18.6) and (18.7). If, for example,
H, was linear in x it would still be a solution of equation
(18.8) but, unless H, = 0, it would no longer satisfy equation
(18.4) and the flow would cease to be rectilinear, and thus
capable of description only in terms of x.

In a sense z is not strictly an ignorable coordinate since
it appears in equation (18.10) determining the pressure, but
we shall regard it as such since p is determined automatically
when v, and H, have been found from equations (18.5) and
(18.9). With this in mind we see that the governing
equations (18.5) and (18.9) may be written as the ordinary
differential equations

‘ﬁz + ”_I{Q dH,

+k, =0 18.11
dx>  4m dx ! ( )
and
d*H, dv
m—— +Hy —= =0. 18.12
n dx? 0 dx ( )

There are many methods by which these equations may
be solved t but we shall proceed as follows. Multiply
equation (18.12) by a constant o and add it to equation

1 See, for example, Ince, Integration of Ordinary Differential
Equations, 1952, § 51.
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(18.11) to obtain
2
nd—z oot X 5\ wodty L (0,4 PHe) 1k, =0.(18.13)
dx n dx 4na
Then, if we set

u=uv,+ m g (18.14)
n
and « is chosen so that
o= ) (18.15)
47h,,
equation (18.13) becomes
2
Z . +aH0;’— +k; =0. (18.16)

Similarly, multiplying equation (18.12) by « and subtracting
it from equation (18.11) enables us to define w by the

relation
w=uv,— Mg (18.17)
n

where a is again given by equation (18.15). The resulting
equation then becomes

d2 d
na e E‘f +k, =0. (18.18)
Since #,, = c*/4nuc, equations (18.16) and (18.18) deter-
mining the flow in terms of u and w become

d2 2\4 d '

d —; +(on/c®) Bod— +k; =0 (18.16")
and

d*w

dw ,
n T2 —(on/c?)*B, i +k, =0, (18.18")
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where
u=v4+ - (on)"*B, (18.14)
4rp
and
w=0,— —— (on)"*B,. (18.17)
4np

§ 19. Hartmann flow. We are now in a position to apply
the results of the previous section to an actual flow problem
and we shall start by considering the case of Hartmann flow.
In this steady flow of a viscous fluid, a magnetic field of
strength B, is imposed normal to the surface of non-
conducting fixed duct walls which are assumed to be a
distance 2d apart and flow is induced by a pressure gradient
along the duct. The origin of the coordinates will be
assumed to be located at the centre of the duct (see Fig. 7).

The magnetic induction vector B, must then satisfy the
boundary condition (15.8) across each of the infinite parallel
planes comprising the duct walls, from which it follows at
once that B,(—d) = B,(d) = 0. Since the fluid is viscous,
the fluid kinematic boundary conditions on the walls are
obviously that v,(—d) = v,(d) = 0.

Equations (18.14") and (18.17°) then show that the
boundary conditions for u and w on the walls of the duct
are u(—d) = u(d) =0 and w(—d) = w(d) = 0. Having
now determined the boundary conditions we may seek the
appropriate solution of equations (18.16" and (18.18").

Considering equation (18.16") first, we see that it is a
linear constant coefficient second order differential equation.
Thus we may expect a solution comprising terms of the form
u = ™. Substituting this expression into equation (18.16%)
then leads to the auxiliary equation }

nm? +(on/c®)tBym = 0, (19.1)

=0, m= —(o/c*n)B,. (19.2)
1 Ince, loc. cit., § 39.

with roots
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Defining the non-dimensional number

R, = (o/c’n)*Bod, (19.3)
which is called the Hartmann number, we see that the non-

zero root of the auxiliary equation defines a term
exp (—R,x/d) in the general solution for . The zero root

:
AR

Vz(x)
—

Y

F1G. 7.

corresponds to a term in the general solution which is

linearly dependent on x, and a simple calculation then shows

that the general solution for u is

u = A exp (—R,x/d)— kyxd
Ny

A similar argument applied to equation (18.18") shows that
the general solution for w is

w = C exp (R;x/d)+

+B. (19.4)

k 1xd
nR,
where A4, B, C and D are arbitrary constants.

+D, (19.5)
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Equations (19.4) and (19.5) comprise the general solution
to equations (18.16") and (18.18") and the solution to the
Hartmann flow problem follows directly when the arbitrary
constants are chosen in accordance with the boundary
conditions on » and w. Notice that the pressure gradient

along the z-axis, ? = —k,, is itself a condition which must
z

be specified, as must the reference level of pressure k,.

Applying the boundary conditions to these general
solutions and using equations (18.14") and (18.17") then
gives the desired results

0.(x) = (”R 2){cosh R, —.cosh (R,,x/d)} (19.6)
h

sinh R,
and
B(x) = 4nu (on)* (k,d2> {sinh (R,,x/d). —(x/d) sinh R,,}.
nR, sinh R,

19.7)

An alternative expression of the solution in terms of the
flow velocity v, at the mid-plane can be obtained by using
equation (19.6) and the definition v, = v,(0) to obtain

2 —
_ kyd cos‘h R,—1 . (19.8)
nR, sinh R,

This expression then relates the pressure gradient P _ -k,
z

and v,, which has the same sign as k,, and enables us to
express v, and H, in the alternative form

_ cosh R, —cosh (R,x/d)
) 0,(x) = v, { cosh R,—1 } (19.9)
an
B.(Y) =, ny (on)} {smh (Ryx/d)—(x/d) sinh R,,} (19.10)
cosh R,—1



§19 INCOMPRESSIBLE FLOW 93

The pressure p is determined by equation (18.10) which
now simplifies to

P+ o (HE+HD = k=2, (19.11)
T
with the constant k, determining the reference level of

pressure.

Two limiting cases are of interest and occur when the
magnetic field becomes vanishingly small (R,—0) and when
it becomes very large (R,>1). In the first case the flow
tends in the limit to the Poiseunille flow of an ordinary
viscous fluid between parallel fixed plane boundaries, and
the velocity v,(x) of equation (19.9) becomes

v,(x) = v, (1— 3‘2) (19.12)

In the second case the velocity v, becomes asymptotic to
0,(x) = vo{l ~exp [~ Ry(1 =| x ||},  (19.13)

which shows that for strong magnetic fields the velocity
profile in the duct becomes almost flat over most of the
channel with the transition to a zero velocity at the
boundaries being virtually confined to a thin boundary
layer adjacent to each wall.

The effect of R, on the velocity profile v,, expressed as a
function of x with the pressure gradient kept constant, is
shown in Fig. 8 for representative values of R,.

Since the gradient g_z of a magnetic line of force in the
x

(x, z)-plane is determined by :% = )%’ we can use equation
x ()

(19.10) to find their shape. The interpretation of our results

will become much more general if we first re-write equation

(19.10) in terms of the magnetic Reynolds number £,

1 Cf. Rutherford, Fluid Dynamics, 1959, § 60.
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introduced in expression (10.10). To do this we identify
the characteristic length L with d and the characteristic
velocity V with v, when

R, = dnpovyd/c?. (19.14)
Written in terms of £, equation (19.10) becomes
B, _ Rm sinh (R,x/d)—(x/d) sinh R, (19.15)
B, R, cosh R,—1 ’ '

from which the shape of a magnetic line of force is easily

seen to be given by the equation
—(v2/2 2 :

- %24 {cosh(R,,x/d) (x%/2d*)R, sinh R,,} + const. (19.16)

R; cosh R;—1

Equations (19.15) and (19.16) show that the magnetic lines
of force leave the duct walls at right angles and then bulge

z

=Y

Fro. 8.
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in the direction of the fluid flow as the conducting fluid
tends to drag them along. The size of the bulge is seen to
be directly proportional to %, for a fixed Hartmann
number R,.

A representative set of profiles of magnetic lines of
force are illustrated in Fig. 9. These curves have been

2

Fi1G. 9.

obtained by keeping the magnetic Reynolds number £,
constant and by adjusting the constant of integration in
equation (19.16) so as to make all the curves tangent to
the x-axis at the points x = +d.

§ 20. Couette flow. We have seen that one effect of the
transverse magnetic field in Hartmann flow was to flatten
the fluid velocity profile. This flattening caused the
transition from the free stream flow conditions near the
centre to the stationary layer of fluid adjacent to either wall
to be confined to thin boundary layers adjacent to each wall.
Since there are only clearly defined boundary layers when
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R,>1 we shall start by making use of equation (19.13) to
obtain a rough estimate of their thickness. To do this we
need only notice that v, reduces from its maximum value v,
at the centre to a value vy(1—1/e)==2v,/3 at a distance
| x| = (1—1/R,) from the centre line. This conveniently
defines regions of width d/R,, adjacent to each fixed
boundary, in which most of the change in the fluid velocity
profile takes place. Since the extent of the boundary layer
is somewhat arbitrary it will be convenient for our purposes
if we identify the boundary layers with these two regions of
thickness d/R, whenever R,>1. The fluid motion in such
a boundary layer is of considerable interest and can be
approximated by the steady viscous shear flow that takes
place between parallel plane boundaries when the upper
boundary moves parallel to itself with a constant velocity ¥
relative to the lower one which is assumed to be fixed;
there being no pressure gradient imposed along the direction
of flow. In this approximation the moving boundary then
represents the streamline in the fluid that forms the edge
of the boundary layer. Shear flow of this type is known as
Couette flow and also provides an approximation to the
more general boundary layer flow that takes place over a
body of revolution of large radius of curvature when it
moves at a constant velocity along its axis. (The flow here
being referred to axes fixed in the body.)

In order that we may analyse this flow let us now assume
that it takes place between parallel planes a distance d apart
and that the coordinate system of § 18 is used with the
origin located on the fixed lower plane. The kinematic
boundary conditions for the fluid are then v,(0) =0
and v,(d) = V. The formulation of a consistent set of
electromagnetic boundary conditions now becomes more
complicated than in the previous problem but, as before, we
can still impose a constant x-component of magnetic
induction B,. Since the flow is steady it is an immediate
consequence of equation (2.2) that E = E, is a constant, the
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value of which is determined by the assumptions we choose
to make about the field. The relationship between E, and
H is easily established by combining equations (2.9) and
(3.10) to give

4no

curl H = 49 <E0+ Ly xB). (20.1)
(4 C

By considering the kinematic conditions on the fixed
wall this equation provides the following boundary condition
onx =0,

OH, _ _ 4no E, (20.2)

0x c

where E,, is the y-component of E,. The nature of this
lower wall has no effect on the flow. This is so because
as the wall is stationary with respect to the magnetic field,
even if it were to be a conductor, no currents would be
induced in it. However, this is not true for the upper
boundary which moves relative to the magnetic field, and
so to simplify the problem we shall consider that the moving
boundary is an insulator. When this flow is used as an
approximation to the boundary layer flow over a body
moving in an infinite medium it is reasonable to assume
that E = 0 at infinity and, consequently, that E, = 0
(compare with Example 5, § 22).

Now the equations (18.16") and (18.18") governing the
flow are both second order equations and so require a total
of four boundary conditions to be specified on the two plane
boundaries if a solution is to be uniquely determined. Two
of these comprise the kinematic boundary conditions whilst
a third is provided by equation (20.2). For the fourth
condition we may specify the component B, on either
the fixed or the moving boundary. We choose to examine
the case B, =0onx = 0.

The boundary conditions for the problem in terms of
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v, and B, are thus
v,=0, B,=0, —2=00onx=0 (20.3q)

and
v,=Vonx=d. (20.3b)

Using equations (18.14’) and (18.17°) to interpret these in
terms of boundary conditions on u and w gives
u=0w=0%_2 _0onx=0 (20.4a)
ox 0Ox

and
u+w=2Vonx=d. (20.4b)

The expressions for v, and B, which result when these
boundary conditions are used with the general solutions
(19.4) and (19.5) to equations (18.16") and (18.18"), together
with the fact that there is no pressure gradient (k, = 0),
are
V sinh (R,x/d)

(%) = 20.5
o:(%) sinh R, (209
and
£
B, = 4—"—”—.(9—")—1/ {1—cosh (R,x/d)}, (20.6)
¢ sinh R,

where again R, = (o/c*n)¥*Byd.  Velocity profiles for
representative values of R, are shown in Fig. 10. The
limiting profile corresponding to R,—0 is linear in x as may
be easily seen from equation (20.5).

The effect of increasing the Hartmann number R, is to
reduce the flow velocity throughout the entire flow region
and to decrease the velocity gradient in the vicinity of the
fixed boundary while increasing it at the moving boundary.

It is a physically observed fact in the steady flow of
ordinary fluids that when the rate of shear between fluid
layers becomes too great the motion ceases to be smooth
and an unsteady irregular motion known as turbulence
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takes place. The condition for the onset of turbulence in
ordinary fluid flows is expressed in terms of a critical
Reynolds number £, appropriate to the type of flow
involved and which, when exceeded, is associated with
turbulent flow. This would indicate that turbulence must
also play an important part in determining the extent to

vo/V A

10

0 »
1.0 x/d

FiG. 10.

which the flow of a conducting fluid may be continuously
deformed by a magnetic field before the fluid motion
becomes irregular and hydromagnetic turbulence occurs.
The analysis of turbulent magnetohydrodynamic motion is
very complicated and will not be pursued here. We should
however remark in passing that high values of R, produce
both an appreciable retardation of the flow velocity in the
boundary layer and very large velocity gradients at the
moving boundary which could lead to turbulent boundary
layer flow.

§ 21. Temperature distribution. The energy dissipation
in the fluid due to viscous effects and to Joule heating
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causes a non-uniform temperature distribution throughout
the fluid flow. This temperature distribution is described
by the energy equation (8.2) and, in general flow problems,
can only be determined when the energy equation is solved
simultaneously with the other equations describing the
fluid and electromagnetic properties. However the problem
becomes much simpler in the case of the incompressible
flows that we are considering, for then the energy equation
becomes decoupled from the other equations and can be
solved separately when v,(x) and H,(x) have been found.
This is so because the assumption of incompressibility
precludes the possibility of temperature variations in-
fluencing the fluid equations (we ignore convection effects).

As was already noted in § 18, since we are concerned with
rectilinear steady flows in which all quantities are of
necessity constant along streamlines, the left-hand side of
the energy equation (8.2) vanishes and the right-hand side
reduces to the ordinary linear differential equation

dv,\? ¢ (dH)\*  _d*T
0=n(%) 4+ () 4T o1
1 (dx) 167’0 < dx ) * e @L1)

in which v,(x) and H (x) are assumed to be known and y is
assumed to be constant.

By using equation (21.1) together with two suitable
boundary conditions the temperature distribution 7(x) and
the heat flow through the boundaries can easily be found.
These boundary conditions may take a number of forms,
one of the simplest of which is the requirement that a
boundary surface be maintained at a given temperature
T = T,. Alternatively, since the heat flux g is proportional
to the temperature gradient and flows in the direction of
decreasing temperature, the heat flux ¢ itself, given by

q==x ‘;—T, may be specified on the boundary. A
x
thermally insulated boundary is thus described by the
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boundary condition %I = 0. Another boundary condition
X
is that corresponding to Newton’s law of cooling in which
the transport of heat energy across a boundary at a tempera-
ture T is proportional to the temperature difference T—T,
between the boundary and the adjacent medium which is
assumed to be at a constant temperature T,. This boundary
condition has the mathematical representation

WT—Ty)+x EJ—Z =0
dx

and is a good approximation provided the temperature
difference T—T, is small. It contains the two previous
boundary conditions as the limiting cases A/y—oco and
h/y—0, respectively, and although usually known as the
radiation boundary condition is better considered as Newton’s
law of cooling since true radiant heat loss at high
temperature is non-linear and varies as 7%,

To illustrate the method of determination of a tempera-
ture distribution let us take for our example the Hartmann
flow of fluid through a duct described in § 19, and suppose
that the duct wall at x = —d is maintained at a temperature
T, whilst the duct wall at x = d is maintained at a
temperature 7.

Using the values of v,(x) and H,(x) determined by
equations (19.6) and (19.7) in equation (21.1) gives

2 232
ar + ———12—— kd” cosh (2R, x/d)
dx*  sinh? R, \ xn

_ 2cosh (Ryx/d) sinh R, __ sinh” Rh} =0. (212

R, R?

This simple equation can be integrated directly to obtain
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the general solution

1 <k,2d“) {cosh (2R,x/d)

~ 7 sinh? R, \xR, 4Ry
. 2 inh?2
_ 2cosh (Ryx/d) sinh Ry | 1(x\*sinh®Ry] .\ 0
R} 2\4d h
(21.3)

If, now, we apply the boundary conditions to equation
(21.3) by requiring that ' = T, when x = —dand T = T,
when x = d, and we set

K= — 1 kid*
sinh? R, \xnR,
. ' . 2
cosh 2R, _ 2 cosh R,,zsmh R, + sinh® R, ., (214)
4R, R? 2R,
we find that
A=(T,—Ty)/2d and B=¥T,+T))—-K. (2L5)

The temperature distribution is thus given by the follow-
ing expression

Te— 1 k2d*\(cosh (2R,x/d)
sinh? R, \xnR, 4R,
_ 2 cosh (Ryx/d) sinh R, + 1(x)?sinh® R,
R? 2\d R,

+H Ty - To)(x[d)+ (T +T1)—K, (21.6)
and the heat flux g through a unit area of any plane x = x,
is given by the expression
(21.7)

= ——x_._.

dx

.
x = xy
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Equation (21.7) shows that when T, = T, and so the
duct walls are both maintained at the same temperature,
the heat flux ¢ = (T, —T,)/2d through the centre plane
x = 0 vanishes. This result is of course to be expected
since the heat flow is then determined only by the dissipative
effects in the fluid and, since Hartmann flow is symmetric
with respect to the z-axis, there will be no heat flux across
the plane of symmetry.

Although we have assumed that the fluid is incompres-
sible, significant changes in fluid density can nevertheless
occur as a result of large temperature changes. Con-
sequently, if the flow takes place in a gravitational field and
large temperature gradients arise, it can be anticipated that
a convection type process will ensue and cause a flow
instability in which the flow will cease to be rectilinear, and
so our solution will no longer be valid.

Instabilities of this rather simple kind, and of a more
complicated type usually associated with the magnetic
effects, are of considerable importance since they largely
determine which of the mathematically possible flow con-
figurations are physically possible.

§22. Examples. 1.* Defining the enthalpy i per unit mass
of a compressible fluid by the relation i = e+ prt, show that
di = TdS+1tdp. When the entropy is constant within a
region, and so di = tdp, show the grad i = t grad p and
hence prove that the equation of motion of a classical
compressible inviscid fluid in the absence of a magnetic
field can be written

%‘;’ +grad (30° +i) = v x curl v.

Consequently, when the flow is steady, prove that
Bernoulli’s equation becomes

yi+i=K,
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where K is a constant along a streamline and is, in general,
different for different streamlines. Show that when
curl v = 0, and so the flow is irrotational, that the intro-
duction of the velocity potential ¢ such that v = grad ¢
leads to the following form of Bernoulli’s equation

%i: +3v+i =f(1),

where f(¢) is a function only of the time ¢r. Hence show
that for steady homogeneous incompressible flow Bernoulli’s

equation becomes
3pv’+p = K,

where K, is a constant throughout the entire fluid.

2. Consider a transverse flow which is defined to be a
two-dimensional magnetohydrodynamic flow in the (x, y)-
plane such that the magnetic vector B is perpendicular to
the plane of flow and, like all other quantities, is independent
of z being a function only of x, y and the time ¢. Denoting
the magnitude of B by B and using the Lundquist equations
show that the magnetic field equation becomes

9B | div (Bv) =0,
ot
or, by the continuity equation,}

2(5) -_.—O;
Dt\p

and that the momentum equation becomes
Dv uH?
— +grad|{ p+ — ] =0.
P Dt s (p 8n

Hence show that for flow within a region of constant

1 Compare with Example 9, § 12.
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entropy Bernoulli’s equation takes the form
uH?
i+ o which is constant along a streamline,
n

where i = e+pt is the enthalpy per unit mass of the fluid.

3. Consider the Lundquist equations appropriate to the
two-dimensional steady incompressible flow of a fluid
around a perfectly conducting rigid boundary over some
part of which B, # 0. Then, by using the electric boundary
condition in the fluid and the fact that E, = 0 on the
conductor, show that the fluid velocity v is identically zero
on those parts of the boundary where B, # 0. Use the
equation for the magnetic field together with Ohm’s law for
a perfectly conducting fluid to prove that E is a constant
vector perpendicular to the plane of the flow. Hence, by
showing that the flow is parallel flow and by considering
the solution in the vicinity of the boundary, prove that
v = 0 along every magnetic line of force which intersects
the boundary.

4. Show that the average fluid velocity © in Hartmann
flow between parallel planes separated by a distance 2d is

_ k,d?
? = =— (R, coth R,—~1).
’]R,zl(ho h )

Deduce that when R,<1, the average fluid velocity
# = k,d*/3n and that when R, > 1, it becomes & = k;d*/nR,.
Show that the components v, and B, of the velocity and
magnetic induction along the duct may then be written in
the form

o =5 {cosh R, —cosh (R,x/d)
? cosh R,—(sinh R,)/R,
and

B,

_ dnp(on)*v {sinh (R,x/d)—(x/d) sinh R,,}
c cosh R,—(sinh R,)/R, |
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Then prove that the y-component j, of the current vector j

is given by
(on)?v {R,, cosh (R,x/d)—sinh R,,}

5»= 7 747 U cosh R,—(sinh R,)/R,

and that the y-component E, of the electric field vector E is
E, = —bB,/c = constant.

5. Consider the Couette flow of a conducting fluid
between insulating planes a distance d apart in which the
magnetic field of strength B, is fixed to the moving plane
and where no external electric field is present. Use a
reference frame with its origin attached to the fixed
insulating plane x = 0 and assume that the plane x = d
moves parallel to itself with velocity ¥V in the z-direction
and that the component of the magnetic field H, parallel to
the moving plane is zero at its surface. (The lines of force
are normal to the surface of the moving plane.) Show, by
considering the constant transverse electric field that is seen
relative to the reference frame attached to the fixed plane,
that the boundary condition for A, on x = 0 is

0H,|0x = 4noVB,/c.

Then, using the kinematic boundary conditions v,(0) = 0
and v,(d) = V, show that

b(x) =V {1— sinh I.(,,(l—x/d)
sinh R,
and

___{1 —cosh R,(1—x/d)}.

6. Show that the temperature distribution in plane
Couette flow with a magnetic field of strength B, directed
normal to a thermally insulated wall relative to which the
magnetic field is stationary is

1 nv?
T = ~{Ty+ ——— [cosh 2R, —cosh (2R,x/d) | ¢,
x{o 4sinh2R,,[ g ( h/)]}
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where T, is the temperature of the electrically non-
conducting wall which is a distance d from the fixed wall and
moves, parallel to itself, with velocity V. Hence show that
the temperature of the thermally insulated wall always
exceeds T, and is independent of the Hartmann number R,
but that when R,>1 the heat flux at the moving wall is
proportional to R,.

7. Consider Couette flow between insulating planes a
distance d apart with a magnetic field of strength B,
attached to the fixed plane x = 0 and directed normal to its
surface. Assuming that there is no externally imposed
electric field, determine the transverse current density
Jy(¥) that flows when the plane x = d moves, parallel to
itself, with velocity V in the positive z-direction. Find the
force that is transmitted through the magnetic field to the
lower plane x = 0, to which the magnetic field is attached,

due to the electromagnetic force ! J(x) x By that is produced
c
when the current flows in the magnetic field. By combining

. . . .. v
this force with the viscous frictional force 5 gd—’ at x =0,
x

where v,(x) is the fluid velocity distribution, show that the
total force per unit length acting on the fixed plane has
magnitude (nVR,/d)coth R, and acts in the negative
z-direction. Notice that since the magnetic field is not
attached to the upper insulating plane x = d, the pure
viscous frictional force that acts on it is equal and opposite
to the combined viscous and electromagnetic forces acting
on the fixed plane. By defining the non-dimensional drag
coefficient Cp, for a plane by the relation C,, = (total drag
force per unit length)/3pV?2, where p is the fluid density,
show that when R, >1

}Cp R = R, coth R,,
where # = pdV|[n is the Reynolds number for the flow.

8. Show that in the Hartmann flow of a viscous,
electrically-conducting fluid between fixed insulating walls
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a distance 2d apart, the velocity profile for large Hartmann
number R, becomes

2
o) = (’%){l—exp [—Ri(1—| x /@]

In this expression k, is the pressure gradient along the
channel, # is the coefficient of viscosity and x is a distance
measured from the centre of the channel in a direction
normal to the walls. Assuming that a boundary layer of
thickness d/R, occurs at each wall find the proportion of the
fluid flow that occurs outside the boundary layers.



CHAPTER 1V

WAVES AND THE THEORY OF CHARACTERISTICS

§ 23. Definitions and basic ideas. In order that we may
discuss the propagation of magnetohydrodynamic disturb-
ances more generally than in our earlier brief examination
of Alfvén waves, we must first examine some of the funda-
mental properties that are shared by all partial differential
equations describing wave motion. Let us begin by defining
a wave in a medium to be a disturbance in the medium which
propagates with a finite speed into a known state (constant
or non-constant). This definition immediately implies
that there must be an advancing wavefront separating the
region through which the disturbance has passed from the
region it is about to enter. If, now, we consider the simple
case of a wave advancing into a region of constant state, it
is easy to see that a discontinuity in the solution must occur
across the wavefront. To show this we need only notice
that ahead of the wavefront the solution is constant, whilst
behind it the solution is, in general, non-constant and
satisfies the set of differential equations describing the
motion. Recalling equation (13.1) we see that when the
solution itself is continuous across the wavefront and the
singularity at the wavefront is confined to a discontinuity
of the derivatives of the solution, then the wavefront is a
surface of weak discontinuity.

We shall choose to adopt this as our mathematical
definition of a wavefront and will use it to determine the
behaviour of the wavefront itself and of the solution behind

109
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the wavefront. When the discontinuities occur in the first
order derivatives of the dependent variables, the surfaces
showing the variation of the dependent variables with x
and ¢ experience a discontinuity in slope across the wave-
front (see Fig. 11(a)). However, if the discontinuities occur
in the higher order derivatives then these surfaces will
appear to be smooth.

>
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FiG. 11(a).

If, alternatively, the solution itself experiences a dis-
continuity across the wavefront, then a different type of
wave will result. The waves corresponding to these strong
discontinuities are called shock waves. We shall postpone
the discussion of shock waves until Chapter VI.

Since the magnetohydrodynamic equations as typified
by the Lundquist equations of § 9 involve p, S, v and H as
dependent variables, it can be anticipated that the system of
equations describing the behaviour of magnetohydro-
dynamic wavefronts will be rather more complicated than
the corresponding equations describing wavefronts in
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ordinary fluid dynamics. However, since the ordinary
fluid dynamic equations may be considered as a limiting
form of the magnetohydrodynamic equations, we shall take
advantage of their simplicity to introduce the main mathe-
matical arguments that we shall use.

Consider the particularly simple problem of the one-
dimensional time dependent isentropic flow of an ordinary
polytropic gas described by the one-dimensional forms of
the continuity equation (6.5) and of the equation of motion
(6.4) without the electromagnetic force term. Taking x as
the independent space coordinate and uv(x, #) as the fluid
velocity component in the x-direction at time ¢, the con-
tinuity equation (6.5) becomes

av 6p

=0. 23.1
ax ax @0
Since the gas is polytropic and the flow is assumed to be

isentropic it follows at once from equations (8.11) and
(8.12) that the pressure p is given by

p = Ap?, (23.2)

6p +p

- - — (9%
where A = constant. Now, grad p = dp/ox = ( ap \ox
and so, using equation (10.19), grad p = a*(9p/0x), where
a is the velocity of sound in the gas and is, in general,

a function of x and 7. Thus the equation of motion (6.4)

can be written
60 a 2 ap
— +v +a =0. 23.3

P <6t ax) ox @33

Equations (23.1) and (23.3) together with the constitutive
equation (23.2) describe ordinary one-dimensional isentropic
gas flow and will be taken as our starting point.

The form in which these equations are written is not
immediately helpful for our discussion since the relationship
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between the wavefront and these equations is not at once
apparent. To overcome this difficulty we shall change from
the independent variables x and ¢ to new independent
variables ¢ and ¢, which we shall choose so that the curve
¢ = 0 bears a special relationship to the wavefront. In
order that we may see how best to choose ¢ let us now
consider Fig. 11(a) in which the ordinate above the (x, f)-
plane may be taken to be either v(x, ) or p(x, 7). If, to
simplify the diagram, we assume that the wave is advancing
into a constant state, then the solution behind the wavefront
and above the region (1) in the (x, 7)-plane is non-constant,
whereas the solution ahead of the wavefront and above the
region (0) is constant.

The curves drawn at times 0, ¢y, ¢, and #; show,
qualitatively, the changing values of the dependent variables
v or p as functions of points P,(x, t) chosen to lie in region
(1) of the (x, f)-plane. The values of v and p corresponding
to all points P, chosen to lie in the region (0) of the (x, f)-
plane are of course constant. Since the wave is assumed to
be advancing, the position x of the wavefront at any specific
time is a function of the time ¢ that has elapsed since the
start of the motion. Geometrically this function appears as
the projection of the wavefront onto the (x, f)-plane and it
is shown in Fig. 11(b) as the thick line in the (x, 7)-plane that
passes through the point (x;, 0). We shal! call this line the
wavefront trace on the (x, f)-plane, though in current
literature it is often loosely referred to as the wavefront
itself.

Since the discontinuity in the derivatives of v and p only
appear when crossing the wavefront we shall use the curves
&(x, f) = constant, where the curve ¢(x, f) = 0 is taken to
coincide with the wavefront trace, as one of the two families
of curvilinear coordinate lines with which we shall replace
the x = constant and ¢ = constant net. Varying the time
while holding ¢ constant then simply moves a reference
point P along the curve ¢ = constant. Hence, since (in
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these coordinates) the wavefront trace can never be crossed
by only changing the time, limiting operations involving
time alone can never lead to discontinuities in the derivatives

@
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of v and p with respect to time. Time is thus still a con-
venient coordinate variable to use in conjunction with ¢
as the other coordinate variable and so we shall leave time
unchanged.

Consequently we shall take the values of ¢ and of the
time as our new independent variables. To avoid con-
fusion in the subsequent manipulation we shall denote the
time in our new coordinate system by #’, using the fact that

v =t (23.4)
In terms of ¢ and ¢’ the operators 9 and —‘Z become
ot 0x
0 a ¢ 60 ox 0x 0¢ ox ot
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or, because of the choice of the coordinate ¢’ in (23.4),

ot~ ot op ot ox 0x 0
Equations (23.1) and (23.3) can then be written as

b , (28\(30) , (28Y, 2 |, a0 _
at'+<at><a¢)+(ax>(" a¢+”a¢> 0B

and

ov + (_61) _(?g) + (@)(v w + 93 fﬁ) =0, (23.7)
ot ot \o¢ oxJ\ 0p p 0¢

respectively.
However along the curves ¢(x, ) = constant the total

differential of ¢ is zero, and so g—¢dx+ %—?d!=0 or,
X

. d .
setting j;c = J, this becomes

dx _ _ (?2)/(9’2) =1 (23.8)
dt ot )| \ ox ) )

An inspection of Fig. 11(b) will show that A is the gradient
of the ¢ = constant curves in the (x, f)-plane and so, on
¢ = 0, corresponds to the wavefront propagation speed. At
points behind the wavefront trace the appropriate values of
A represent the propagation speeds of the continuous wave
located at those points.

If we denote the jump in a quantity X across the wave-
front by [ X], then by taking points P, and P, on opposite
sides of and arbitrarily close to the wavefront trace ¢ = 0
we have that [ X] = X(P,)— X(P,). Since, by our choice of
coordinates, derivatives with respect to ¢’ suffer no dis-
continuity when differenced in this manner we at once see

that [g—?] =|:ai:i| =0. Thus, differencing equation
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(23.6) across the wavefront trace in this way, we obtain the
equation

(solss] - (el ++L) -

while equation (23.7) when similarly differenced becomes

ag\ ov] , (38 [av] , a*[ap
('67 5@] " (Ec)(”[aqs] T [aqs

Dividing these equations by (‘;—(ﬁ) and using equations
X

(23.8) we finally obtain the homogeneous simultaneous

equations
_nl % ov
(-4 [645] +p [a¢] 0 (23.9)

9p 0. 23.10
Tloelrenlgl-e o

Now it is well known { that these equations can only
have a non-trivial solution allowing discontinuities to exist

(i.e., I:gg ] #0, [6;] # 0) when the determinant of their

coefficients vanishes, and so
(=4 »p
2 —_
a’ -2y | = 0. (23.11)
p

The equation is called the characteristic determinant which,
as we shall see shortly, when used in conjunction with
equation (23.8), defines two sets of characteristic curves

1 See Aitken, Determinants and Matrices, 1954, § 28.
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with important properties. Expanding the characteristic
determinant then gives the characteristic relation

(v—A)?—a* =0, (23.12)
which implies the following permissible values of 4,
A=v+ta. (23.13)

Now, even with the small amount of information we
have so far obtained, we are able to deduce some interesting
properties of isentropic flow. Since A represents the pro-
pagation speed at any point we see first that the wavefront
corresponding to ¢ = 0 and the continuous disturbance
existing behind it all propagate either forwards or back-
wards with a speed which is the algebraic sum of the fluid
speed v and the local speed of sound a. In particular, when
the wave is advancing into a constant state, since v and a
are continuous across the wavefront, A is constant, and so
the wavefront trace will be a straight line as shown in
Fig. 11(b) with its gradient equal to the propagation speed
Veonst T Gconst-  Since we have not specifically used the
assumption of a constant state ahead of the wave it is at
once apparent that these ideas are quite general and extend
immediately to waves advancing into a non-constant state.

The curves ¢ = constant are determined by combining
equations (23.8) and (23.13) to obtain the two equations of
the characteristics

dx =v+a (23.14q)
dt

and
dx
— =v—a (23.14b)
dt

respectively, which must be integrated to find x as a function
of t.

The actual value assigned to each of these ¢ = constant
curves in either of the two families (23.14a, b) is usually
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immaterial since ¢ does not generally enter explicitly into
the analysis. However, should it be necessary to assign a
value ¢ to each of the curves belonging to a family it may
easily be achieved as follows. If, at time ¢ = 0, the wave-
front is located at x = x,, define a single valued function of
x, say f(x), along the x-axis such that f(x,) = 0 and then
assign to the ¢ = constant curve of the family passing
through the point (x, 0) the value f (x). For a wave starting
at x = Oat time ¢ = 0it is often convenient to set f (x) = x,
which is equivalent to setting ¢(x, 0) = x.

We should notice that since v and a are only known when
the solution has been found we are not immediately able to
use equations (23.14a, b) to determine x as a function of ¢.
We can, however, use them to determine the wavefront
trace since, as we have already remarked, v and a are
continuous across the wavefront and so on the wavefront
can be assigned their known values (constant or non-
constant) ahead of the wavefront. Equation (23.14q)
describes advancing waves whilst equation (23.14b) describes
receding waves. The integral curves corresponding to
equations (23.14a, b) are called the characteristic curves of
the equations (23.1) and (23.3). The family (23.14a)
describing the advancing waves is sometimes denoted by
C:*’ and the family corresponding to equation (23.14b) by
cy

The arguments used in deriving the characteristic relation
are of fundamental importance and, in fact, form the basis
of classification of all partial differential equations. When,
as happened here, the roots of the characteristic relation are
real, the equations are called hyperbolic and, as our inter-
pretation of 2 shows, describe wave propagation at a finite
speed. Had the roots been imaginary there would have
been no real families of characteristics C‘*? and the partial
differential equations from which the characteristic relation

+ It is possible to introduce characteristic curves in another manner
and this is indicated in Example 1 of § 28.
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had been derived would then have been called elliptic.
Although we have only applied these ideas to first order
equations they can easily be extended to higher order
equations showing, for example, that Laplace’s equation is
elliptic whereas the heat equation is parabolic, correspond-
ing to the coincidence of the C(*) and C(™) families of
characteristics.

In our simple example there were only the two families
of characteristics C*, but it is easy to see that in a more
general system of first order partial differential equations
involving n dependent variables there will, in general, be n
families of characteristics C(1), C®, ..., C™ (see Example 3,
§ 28). We shall see this very clearly when we proceed to
discuss magnetohydrodynamic waves.

The fact that we cannot immediately integrate the
characteristic equations (23.144, b) is a direct consequence
of their non-linearity. Had the governing partial differential
equations been linear, as for example in the description of
the propagation of infinitesimal disturbances like sound
waves, the C*) families of characteristics could have been
found immediately (see Example 5, § 28).

Although so far we have only applied these ideas to one
space dimension, they do in fact apply equally well to two
and three space dimensions. This can be shown either by
using the same type of argument that has just been outlined,
with the characteristic curves @(x, ) = constant replaced
by the characteristic surfaces ¢(x, y, z, f) = constant (see
Examples 4 and 5, § 28), or by choosing the x-axis to be
normal to some element P, of the wavefront at a given
instant of time. For then, in the neighbourhood of P, in
both space and time, the problem is locally one-dimensional
and of the form examined here. This latter approach is
particularly useful when the wavefront is plane, for then
it is unnecessary to determine the behaviour along the
normal to each element of the wavefront with advancing
time.
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§ 24. Rays and characteristic surfaces. Since 4 is the
normal velocity of propagation of the wavefront, the
following simple geometrical method of construction for a
two or three-dimensional wavefront is often useful. At
each point P, of the wavefront S, at time #, construct a
vector, normal to S, of length A(P,)d¢, where 4t is a small
increment of time. The wavefront S at time #,+ 0t is then

Ax
p Q

- T

s |
/) NSt

% |

SONAT

Vr J

S VR N\

FiG. 12,

approximated by the envelope of all the planes which are
normal to and located on the end points of each such vector.
This construction generates the new wavefront from
elements of plane waves and is essentially similar to the
construction often used in geometrical optics (first suggested
by Huygens), which uses instead the envelope of all the
spherical wavefronts emanating from point sources of light
on a given wavefront.

This analogy with geometrical optics can be pursued a
little further if we introduce the idea of a ray. To do this
consider Fig. 12 in which S, represents an element of a
wavefront at time ¢, which, in time increment §¢, moves with
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velocity v, to become surface element S, so that a point
P, of S, becomes point P of S.

In general the velocity v, of the point P, of S, will not be
directed along the normal n to S, at P,. However, since
by our construction the tangent plane to S, taken parallel
to the tangent plane at P,, must form part of the envelope of
the wavefront at time ¢, + 8¢, the distance P,Q measured in
the x-direction along n must be A(P,)ét. Consequently, if
we define the velocity v, of the point P, to be the ray velocity
at P,, we at once see that the relationship between the ray
velocity v, at P, and the normal n is simply

A=n.v, (24.1)

The vector P, P is called the ray vector through point P,.

In a continuum medium the ray velocity can be inter-
preted as the velocity of the particles comprising the wave-
front and, as we have just indicated, is distinct from the
normal velocity. For this reason the wavefront is sometimes
called the surface of normal velocity to emphasise that such
a surface does not take into account the way in which the
individual points comprising the surface transform with
time.

We shall postpone discussing how the characteristic
curves which we have just introduced may be used to help
determine the flow conditions behind a wavefront until we
come to discuss the special case of magnetohydrodynamic
simple waves. Example 6 of § 28 does, however, indicate
how they may be used in the special case of ordinary
isentropic flow.

Before examining the characteristic curves that occur in
magnetohydrodynamics let us return briefly to the idea of
characteristic equations. Either of the two characteristic
equations displayed in (23.9) or (23.10) may be used to

determine the relationship that must exist between [g—;]
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v | . . . . . .
and [8— in one-dimensional isentropic flow when use is

made of the permissible values of 1 given in (23.13). We
obtain the results

op ov ..
+ =0 along C'* characteristics (24.2a
[«w] g [aqs] one e (2420

and

op v - o
+ =0 along C{™) characteristics. (24.2b
[w] ’ [aqs] o e

When the wave is advancing into a constant state these
equations have a convenient interpretation in terms of the
infinitesimal increments experienced by p and v themselves
in the vicinity of the wavefront ¢ = 0. To establish this we
shall use the obvious fact that when propagating into a
constant state, all derivatives with respect to ¢ ahead of the

wavefront will vanish and so the jump [Zi(] that is
experienced by a function X of ¢ and # when crossing

¢ = 0 reduces to %, evaluated immediately behind the
wavefront. If, now, we approximate % behind the wave-

front ¢ = 0 at time t; by the difference equation
g — X(O’ t(’))_X(aqSO’ t(,))
0¢ d¢o |

where ¢ = d¢, is a characteristic curve close behind the
wavefront, we can then write, approximately,

X _ 85X
% oo
with X = X(0, t5) — X(3o, o).

(24.3)

(24.4)
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Applying this result to the characteristic equations
(24.2a, b) then gives the alternative form of the character-
istic equations

—adp+pdv = 0 along C'*) characteristics (24.5q)
and
adp+pdv = 0 along C(™) characteristics. (24.5b)

This notation has the advantage that it correctly suggests
that when wave propagation is into a constant state the dp
and v of equations (24.5a, b) can be replaced by the
differentials dp and dv which are, of course, infinitesimals.
However, for wave propagation into a non-constant state,
the § notation must be regarded as an alternative to our
earlier notation representing the jump in the derivative of
the associated variable normal to the wavefront. The jumps
in the derivatives are finite but can be arbitrarily large,
subject only to the requirement they be compatible with the
characteristic equations.

§ 25. Magnetohydrodynamic characteristic equations. We
now consider the application of the ideas contained in §§ 23
and 24 to magnetohydrodynamic flows. However, before
doing so we first simplify the problem by assuming that
dissipative effects may be neglected and that the fluid is
polytropic. The consequences of these assumptions have
already been examined in § 9 where it was shown that they
result in the Lundquist equations

% 4 div (p) =0, (25.1)
ot
ov u
— +(v.grad)v— — (curl H) x H+ grad p(p, S)=0, (25.2)
ot 4np

?g +(v.grad)S =0, (25.3)
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%’{ —curl (s x H) =0, (25.4)
divH = 0, (25.5)

together with the polytropic gas law
p = A(S)p’. (25.6)

If we wished we could now express these equations in
component form and, by proceeding in a manner strictly
analogous to that employed in the previous two sections
(see also Example 4, § 28), we could derive the characteristic
determinant and characteristic curves appropriate to the
Lundquist equations. This method, although perfectly
satisfactory, requires considerable algebraic manipulation.
Fortunately this can be avoided if we make use of the argu-
ment presented at the end of § 23 and orient the x-axis so
that it is directed normal to the wavefront surface at some
given point P of interest. For then, in the neighbourhood of
this point, the problem is locally one-dimensional and we
may simplify equations (25.1) to (25.5) by considering only
their one-dimensional form in (x, £)-space.

The gradient term in equation (25.2) can be simplified
by using the result

grad p(p, S) = % grad p+ % grad S,
dap as

which combined with equation (10.19) gives

grad p(p, S) = a® grad p+ <Z—g> grad S, (25.7)
where a is the local speed of sound. This then allows us to
write the one-dimensional Lundquist equations in the form:

Continuity equation

o d(pvy) =0,
ot 0x
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X —

aH) < H

Momentum equation
0x

6v+ v u <
+1<a2
p

ot ox  4mp
Magnetic induction equation
oH _ N o(vxH) -0
ot 0x
Energy equation (isentropic condition)

N
at
Solenoidal condition
0H,
ox

where n is a unit vector which is normal
and directed along the positive x-axis.
component form these equations become

a_p
0x

B

=0,

ap ap v,

— +4v,— +p—==0,

ot " Fox P ox

0 4, Px o £ g OHy | B gy OH:

ot * ox 4np 7 0Ox dnp  * ox

L (6/)

p 6x

NSRS

ot * ox 47zp 0x

ov, xa_‘k_LHxaHZ-_-o,

ot 0x  4mp 0x

MAGNETOHYDRODYNAMICS

+(

§25

22

to the wavefront
When written in

(25.8)

as\ _
55)(5?) =0, (25.9)

(25.10)

(25.11)
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o, _ 0, (25.12)
ot

?:]_1_)' + 'Q (Hyvx_Hxvy) = 05 (25.13)
Jt ox

cH. 0

— + — szx_Hxvz = 0’ 25.14
ot ax( ) ( )

% 5B 20 (25.15)
0 Ox

M, _, (25.16)
Ox

where the suffixes, x, y and z are used to denote the
appropriate vector components.

Now equations (25.12) and (25.16) show that in the
neighbourhood of point P of the wavefront, H, = H,, is
constant. Thus, since the wavefront is a surface of weak
discontinuity, and so H, v, p and S are continuous across
the wavefront, it immediately follows that H, = H,, is a
constant across the entire wavefront. Using the notation
of § 24 this result becomes

SH, = 0. (25.17)

The remaining seven equations then describe the
magnetohydrodynamic flow that occurs both immediately
in front of and behind the wavefront. So far, although we
have chosen the x-axis in a convenient manner, we have left
undetermined the precise orientation of the mutually
orthogonal y and z-axes. Let us now take advantage of this
fact to simplify our equations still further by choosing the
z-axis so that H,, the z-component of the magnetic field
behind the wavefront, becomes zero. When H, is set equal
to zero in equations (25.8) to (25.14) and the arguments of
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§§ 23 and 24 are used they yield the following set of magneto-
hydrodynamic characteristic equations

Fe,0p+pdv, =0, (25.18)

- ap U
000 +adp+ (=) 0S+ £ HSH, =0, (25.19
FCapdv.+a*dp (as) iy IhoH, =0, (25.19)

Feupdv,— £ HSH, =0, (25.20)
4n

Fepov,— L HOH, =0, (25.21)
4n

F¢,0H,+ H,60,— Hv, =0, (25.22)

Fc,0H,—HJv, =0, (25.23)

where, if the velocity A of the wavefront trace ¢(x, £) = 0

is determined by 4 = — ¢\ /(29 , then
ot 0x

¢n=|A-0v.| (25.25)

is the modulus of the speed of the wavefront relative to the
fluid. The minus and plus signs associated with ¢, in these
equations correspond, respectively, to the negative and
positive values of v, —A.

When ¢, # 0, equation (25.24) implies that

88 = 0. (25.26)

If we set 6S = 0 in equations (25.18) to (25.23) and arrange
the terms in the equations in the order dp, év,, dv,, dv,,
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0H, and 6H, it is easy to see that the magnetohydrodynamic
characteristic determinant

Fe, p 0 0 0 0
2
? ge o0 o Ml
p 4zp 4np
0 0 Fo o0 ML
4np =0(25.27)

0 0 0 Fe, 0 HH,

4np
0 H, -H, 0 Fe, 0
0 H, 0 —H, 0 Fe,

is the condition that these homogeneous equations should
possess a non-trivial solution.

It is convenient to regard c, rather than 1 as the funda-
mental parameter in this characteristic determinant and in
the associated characteristic relation. If we define the
Alfvén speed b by the expression

W

b= ,
4mp

(25.28)

and the Alfvén speed b, in the x-direction by the expression

2
b, = \/ #Ho, (25.29)
4np

the magnetohydrodynamic characteristic relation derived
from (25.27) becomes

(ch—bD{(ch—a)ch—bY) —ci(b*— b))} = 0. (25.30)
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This equation has the characteristic roots

¢, =b,, (25.31a)

¢, =c¢; =(3{(a* + b)) +./(a*+b*)*—4a*b}})*(25.31b)
and

¢ = ¢, = (${(a® + b?)— J(a® + b*)* —4a®b2}) 1. (25.31¢)
By using the obvious inequality

(@*+b%?—4a%b? > (a*—b»)* >0, (25.32)

it follows that the roots ¢, and ¢, of equations (25.31b, c)
are always real, as are the characteristic roots A given by

A=v.tcy, (25.32a)

A =uv.tc, (25.32b)
and

A=uv,tb,. (25.32¢)

The + and - signs of ¢, correspond, respectively, to the
— and + signs of ¢, in the characteristic equations, and
similarly for the root c,. Itis obvious that ¢, >c,. For this
reason the wave corresponding to equation (25.32a) is
called the fast wave and the wave corresponding to equation
(25.32b) is called the slow wave. For reasons that will be
presented in the next section the wave corresponding to
equation (25.32c¢) is called the transverse wave.

Finally, returning to equation (25.24), we see that when
¢, = 0 (i.e.,, A—v, = 0) it is possible that 65 0 and so a
disturbance in entropy may propagate. This disturbance,
called an entropy wave, corresponding to the root ¢, = 0
is characterised by the equivalent equation

b=, (25.324)

There are thus seven sets of characteristic curves that
occur in magnetohydrodynamics corresponding to the
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families of solutions to the equation ? = 4, in which 4

takes one of the seven values contained in equations
(25.32a) to (25.324).

§ 26. Magnetohydrodynamic waves. We are now in a
position to determine the fundamental properties of the
fast, slow, transverse and entropy waves that we have just
mentioned. To do this we shall make use of the magneto-
hydrodynamic characteristic equations (25.18) to (25.24)
and the characteristic roots (25.31a, b, ¢).

(a) Fast and slow waves

If we now assume that c, # 0 and that the factor
(c2—b2) in the characteristic relation (25.30) is non-zero
(i.e., that ¢, # b,), we are left with the relation

(ch—a®)(ci—bl) = ci(b*~b). (26.1)

The right-hand side of this expression is always positive and
so we must either have the conditions

¢22 a? and ¢ = b? (26.2a)
or the conditions
¢2<a? and ¢% < b2 (26.2b)

By virtue of the relationship ¢, > ¢, we see that the conditions
(26.2a) are equivalent to the inequalities

c;za and ¢, 2 b, (26.3a)
whilst conditions (26.2b) are equivalent to the inequalities
¢, <a and ¢, £b,. (26.3b)

It is at once apparent from equation (26.1) that equality
can only occur in these relations if b = b,, which corre-
sponds to the non-existence of a transverse magnetic field.
In the limit of vanishing transverse magnetic field
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c,—a, the local speed of sound, whilst c,-b,, the
Alfvén speed. This fact has resulted in the fast and slow
waves also being known as magnetoacoustic waves.

To find the fundamental properties of these magneto-
acoustic waves we now combine characteristic equations
(25.21) and (25.23) to obtain

(c2—b2)3H, = 0.

We have assumed that (c2—b2) =0, and so it follows at
once that §H. = 0 and hence, from equations (25.21) or
(25.23), that év, = 0. Since we have also assumed that
¢, = 0, equation (25.24) shows that 6S = 0. So magneto-
acoustic waves have the property that

ov, = 0H, = 6S = 0. (26.4)
The remaining four magnetoacoustic characteristic
equations (25.18) to (25.20) and (25.22) can be written in a
convenient form if we express the jumps dp, dv,, v, and
0H, in terms of a dimensionless parameter characterising

the jump of one of these quantities. We shall express these
jumps in terms of the jump Jdp by setting

op = ¢p (26.5q)

where ¢ is our dimensionless parameter. It follows at
once that

oo, = —e(Fep), (26.5b)
Fec,b b
50’. = ‘(C—i‘:_—b—i)'! sgn (HXH),), (26.50)
2
L (26.5d)

T (ek-bY)
where b, = \/ uH §/47tp is the Alfvén speed in the y-direction,

1 Notice that different values of the parameter ¢ are to be assigned
to the fast and slow waves.
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sgn (H H,) = H.H,|| H.H, | is a unity multiplier carrying
the sign of H,H, and where ¢, can take either the value
4 f or ¢;.

The pressure change dp across the wavefront can be
determined directly from equation (25.7). In its one-
dimensional form this equation becomes

o _ a0 (3025
ox 0x oS \ox
. 0 _0¢ 0 .
and by applying the operator — = -~ — defined in (23.5)
ox 0x 0¢
and differencing the result across the wavefront we

immediately obtain
op
dp =a*dp+ = )5S. 26.6
P p <as> (26.6)
The pressure change in magnetoacoustic waves is then

given by
dp = a*dp. (26.7)

(b) Transverse waves

We have seen that transverse waves are characterised by
the condition ¢, = b,. Let us now also assume that ¢, and
¢, are both distinct from ¢,. Setting ¢, = b, in the magneto-
hydrodynamic characteristic equations immediately leads
to the results

Sv, =00, =0H,=0S=0p=0 (2680

y y
and

Sv, = F \/ £ sgn (H,)5H.. (26.8b)
4np

The F sign in this equation corresponds to the F sign
associated with ¢, in equations (25.22) and (25.23),
respectively. Since the vector 6H has §H, as its only non-
zero component, it is a transverse vector with respect to
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the wavefront normal n, and so it can be expressed in terms
of a dimensionless parameter ¢ characterising the size of the
jump by means of the vector equation

0H = ¢nx H. (26.9a)

The vector jump dv which has dv. as its only non-zero
component may be written

ov = Fe \/—— sgn (H)n x H. (26.9b)
4rnp

These results show that the change across the wavefront
only occurs in the transverse components of dH and Jv
which is the reason for the name transverse wave.

Combining equations (26.6) and (26.84) demonstrates
that transverse waves are non-compressive, since dp = 0.
We can, however, establish more than this if we consider
the jump in the derivative of H? across the wavefront. For,
by differentiating H? with respect to ¢ and differencing the
result across the wavefront, it is easily shown that

S(H?) = 2H.5H.

Consequently, from the expression for JH in equation
(26.94) and the properties of a triple scalar product, we see

that
S(H?* =0, (26.9¢)

2
showing that dp* = 0, where p* = p+ ”81 is the total
Vg

pressure (i.e., the sum of the fluid and magnetic pressures).

In § 11 we have already shown that an Alfvén wave is a
transverse wave that occurs in an incompressible fluid and
it must obviously be a special form of the more general
transverse wave discussed here. For incompressible fluids
we must modify the magnetohydrodynamic characteristic
equations by setting dp = 0 and replacing a*5p by &p in
order to determine the exact relationship that exists between
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the jump quantities. The connection between Alfvén waves
and general transverse waves is indicated in Example 10,
§ 28.

(c) Entropy wave

We have seen that an entropy wave is characterised by
the root ¢, = 0 and equation (25.32d) shows that the normal
wave speed is v,. Setting ¢, = 0 in the magnetohydro-
dynamic equations and assuming that H, # 0 shows that

ov = 6H = 0. (26.10a)
If we now characterise the entropy jump JS by the equation
éS=c¢ (26.10b)
it at once follows that the density jump is
bp=—% g_;’. (26.10¢)
Applying these results to equation (26.6) then shows that
op = 0. (26.10d)

Since there is no discontinuity in velocity or pressure across
an entropy wave no fluid particles can cross such a wave-
front. Thus although the density and entropy undergo
jumps when crossing the wavefront the fluids on adjacent
sides of the wavefront do not mix. This type of wave
describes the motion of two fluids that are in contact but
are in two thermodynamically different states. For this
reason these wavefronts are sometimes called contact
surfaces. See Example 9 of § 28 for details of the entropy
wave that occurs when H, = 0.

§ 27. Magnetohydrodynamic wavefront diagrams. The
very distinctive nature of magnetohydrodynamic waves that
has just been established in the discussion of the relation-
ships that exist between the jump quantities dp, év, H and
4S is still further emphasised when the surfaces of normal
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velocity are considered. To do this we make use of equations
(25.31a, b, c¢) and consider the manner in which waves will
propagate from a fixed point source into a region of
constant state.

Equations (25.31a, b, ¢) can be written in the form

b—b" =cos 0, (27.1a)

Ezf = (HA+9)+/(1+5)*—4scos® 6})*  (27.1b)

and

(2

% = (39— —dseos?OY*, (2710)

where s = a?/b? and 0 is the angle between the wavefront
normal and the magnetic field vector H. We shall now
regard b,/b, c;/b and ¢,/b as radial vectors drawn at the
polar angle 0 from an origin located at a point P. This
representation then immediately enables us to construct a
polar plot of a cross-section of the three-dimensional surfaces
of normal velocity. The transverse wave curve of normal
velocity described by equation (27.14a) is independent of s
and is easily seen to comprise two circles of unit diameter
that are tangent to one another at the origin and have their
centres on a line parallel to H. The curves of normal velocity
for the fast and slow waves corresponding to different
values of s can easily be constructed from equations
(27.1b, ¢). Points of special interest on these curves occur
at 8 = 0, corresponding to the wavefront normal velocity
along the magnetic field, and at 8 = /2, corresponding to
the wavefront normal velocity in a direction transverse to
the magnetic field. Thus at 0 =0, c /b = (3{(1+5)
+|1=s|})t and ¢/b= ({1 +s)—|1=s[})* while at
0 =mn/2, c¢/b=_~1+s)* and c/b=0. Representative
curves are shown in Fig. 13 for s<1 and s>1. The slow,
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transverse and fast curves of normal velocity are denoted
by the letters S, T and F, respectively. Since the curves of
normal velocity constructed in this manner are the same
for any plane passing through the point P located at the
source and containing a line parallel to the magnetic field
vector H, it follows directly that the actual surfaces of
normal velocity are obtained by rotating these two-
dimensional curves about the x-axis.

Having determined the surfaces of normal velocity we
are now in a position to use the construction described in
§ 24 to obtain the actual wavefronts. We recall that when
the wavefront S, is known at a time #, then the wavefront
S at time ¢ = #,+ J¢ corresponds to the envelope of all the
planes that are parallel to the tangent planes at all points
P, of S, and are distant from the points P, an amount
M(Py)dt along the normals to S, through the respective
points Py. This construction simplifies somewhat if we
assume that the flow velocity v, in the constant state into
which the waves are advancing is zero, for then

ev= 1m0, | = 4]

and ¢, becomes equal to the wavefront normal velocity.
Let us now determine the shape of the fast, slow and
transverse wavefronts that emanate from a fixed point
source 0. Westart by deriving the parametric equation of a
representative line belonging to the envelope in the (x, y)-
plane. Since the wave is advancing into a constant state, c,
is constant, and the distance moved in a time 7 by a plane
wavefront that is normal to a radius vector inclined at an
angle 0 to the x-axis (i.e., to H) is +¢,(0)¢ (see Fig. 14).
The equation of the line is

xcosO+ysin@ = +c,0)1, (27.2)

where the + sign corresponds to a wave diverging from o
and the — sign corresponds to a wave converging on o.
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We know from elementary analysis T that the envelope of
these lines is obtained by solving equation (27.2) simul-
taneously with the equation

—xsinf+ycosf ==+ (%') t (27.3)

which is obtained by differentiating (27.2) with respect to 6.

.
X

0 ~
FiG. 14

The general expression for the envelope at time ¢ is thus

x=% (c,, cos 0— %c(—; sin 0> t (27.4a)
and

y=+= (c,, sin 0+ %%’ cos 0) t. (27.4b)

It is to be understood that the signs to be chosen in these
expressions are those which make it possible to construct an
envelope. The fast, slow and transverse wavefronts are then

+ Gillespie, Partial Differentiation, 1960, pp. 66-68. The envelope
of the curves f(x, y, &) = 0 as a varies is determined by eliminating o
between the two equations f = 0 and %Sf; = 0.
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obtained by setting ¢, equal to cy, ¢, and b,, respectively.
When this is done we find that:

for the fast wave

x c s sin? 0
Z = +cos0{L — t,(27.5a
b {b (cs/b){(1+5)*—4s cos® 0}*} ( )
Y o ¢y s cos? 0 .
Z = +sin 0 {-L + t;(27.5b
b 1 { b (c/b){(1+5)*—4s cos® 9}*} ( )
for the slow wave
x c s sin” 0
~ = +cos 0= + t, (27.6
b * {b (eu/bY{(1+5)7—4s cos? 0}*} (27.6a)
y . ¢ s cos? 0
~ = 4sin 0{-=° — t; (27.6b
p o o {b (eo/){(1 +35)2 —4s cos? 0}%} (27.60)
and for the transverse wave
x = +bt, (27.7a)
y =0. (27.7b)

Since the wavefront is symmetrical about the x-axis,
and the wavefront on any other plane drawn through the
x-axis will be identical, it follows that the actual three-
dimensional wavefronts are obtained by rotating these
figures about the x-axis. Typical wavefront diagrams in the
(x, y)-plane, frequently called Friedrichs diagrams after
K. O. Friedrichs who was the first to derive them, are shown
in Figs. 15, in which Fig. 15(a) shows their geometrical
construction and their most important dimensions (see
Example 13, § 28). Here again the slow wavefront is
denoted by the letter S and the fast wavefront by the letter F.
The points A4 represent the transverse wavefront which has
degenerated to two points moving with speed b in opposite
directions along the x-axis. The reason for this degeneracy
is easily seen when the geometrical construction is applied
directly to the transverse wave curves of normal velocity for,
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since they are both circles tangent at the origin, all the
planes forming their envelopes pass through the points A.
The application of this method of construction to obtain
thewavefront appropriate to a disturbance propagating from
a source of finite size is indicated in Example 11 of § 28.

In the next chapter we shall show how the non-linear
one-dimensional equations of magnetohydrodynamics may
be integrated to describe the behaviour of an important
special class of non-linear wave phenomena. The fact that
the Lundquist equations are non-linear implies that the
principle of superposition f cannot be used to obtain
solutions. This valuable principle, which is only applicable
to linear equations, enables the construction of the solution
to a general problem to be achieved by the superposition
(addition) of certain simple and easily constructed solutions.
However, when the disturbances involved are small and
take place about some equilibrium state which we shall
denote by the suffix 0, the Lundquist equations can be
linearised so that the superposition principle will then apply.

To illustrate this idea let us assume an equilibrium state
characterised by the constant values H,, py, Sy and v, = 0.
Assume small disturbances h, p; and S so that

H=H,+h, p=potp;, S=S+5;,

and assume also that the velocity v and the current j that are
produced are both small. Then, regarding terms of order
h* and | k|.| v|, ..., etc., as negligible, equation (5.1") for
the magnetic field becomes

ch

= = curl (v X Hy), (27.8a)
while the equation of mass conservation (6.5) becomes
%—)t—' +podive =0. (27.8b)

t See Coulson, Waves, 1949, §§ 6 and 7.
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A simple dimensional analysis of the entropy equation
(8.2") shows that the entropy is constant to first order
provided l v l< <V, where ¥V = LT™! is a characteristic
velocity of the fluid. Consequently, since we are assuming
that v is small, the flow is isentropic and the momentum
equation (7.5’) can be written

Po o +algrad p,— £ (curl hyx H, =0, (27.8¢)
ot 4n

while the solenoidal condition (2.3) becomes
divh = 0. (27.8d)

Equations (27.8a) to (27.8d) are linear in the small quantities
h, vand p,.

Let us consider a plane wave propagating normal to the
x-axis and choose the orientation of the y-axis so that the
constant magnetic field vector H,, which makes an angle 0
with the x-axis, lies in the (x, y)-plane. Then the components
of H, are (H, cos 0, H, sin 0, 0) and, as the wave is plane
and normal to the x-axis, all the dependent variables must
be functions of only x and 7. The Cartesian components
of equations (27.84) to (27.8d) then become

he _ o, (27.9a)
ot
oh, —H,cos 8 9y +H,sin 0 Doe _ 0, (27.9b)
ot Jax ox
”f’z — Hy cos 02 =0, (27.9¢)
Jx
8p1 ov
14— =0, 27.9d
ot Po ox ( )

+ The suffixes x, y, z denote the appropriate components of the
vectors b and v.
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Po a_v_x +a3 a—& + —u— HO sin B%hy =09 (27.93)
t X

J 0x 4n
ol = K Hocos0 Py 0, (@79)
ot 4n 0x
v u dh
Poot T4 0% %k (27:99)
Ohs _ . (27.9h)
0x

It follows immediately from equations (27.9a) and (27.9h)
and the initial equilibrium state that

h,=0. (27.10)
Combining equations (27.9¢) and (27.9¢) then gives

0*h, _ pH{ cos® 0 0°h,

o 4np,  0x* (27.11)
and

0%v, _ pH§ cos® 0 9, 27.12)

orr  4mp,  ox* '

showing that h, and v, propagate as Alfvén waves with

2 2 o\+
Alfvén speed b, = (’M> in the x-direction (cf.,

Example 10, § 12).

The propagation of the other dependent variables v,,
v,, h, and p, is less simple and is determined by equations
(27.9b) and (27.94d, e, f). As solutions to linear equations
describing wave motion are usually synthesised by the
superposition of monochromatic harmonic waves,t let
us assume that the dependent variables all have a harmonic

4npo

dependence with frequency 29 and wavelength . Then for
b4

t See Coulson, loc. cit., § 10.
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a plane wave moving in the positive x-direction, at any time

t all dependent variables on the plane x = ;—wt will be
n

constant. Consequently, all the dependent variables will be

. 2 . .
functions only of wt— (—f) x. It is customary to write

k=— (27.13)

and to call the quantity k the wave number. So, as the plane
waves are assumed to be harmonic, we can assume that the
dependent variables all vary as & exp {i(wt —kx)}.

Thus, if kY, v}, v} and p} are the amplitudes of the
harmonic disturbances of the dependent variables, we can
write

h, hy

* V=1 " \Rexp {ilwt—kx)}. (27.14)
*

P o1

Making these substitutions in equations (27.95) and
(27.9d, e, f) we obtain a homogeneous set of equations for
the amplitudes involving w and k. The compatibility
condition to be satisfied by these equations is easily seen to be

w —kHysin 8 kH,cos 0 0
0 —kpo 0 w
— krH, sin 0 wpo 0 —kal | =0,
4r
kiH, cos 0 0 WP, 0
4r

(27.15)
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A simple calculation then shows that

4 2
(‘i) —(a3+b2)<%) +a2b2=0  (27.16)

A

2\
where, as before, b = (” Ho\ is the Alfvén speed in the

4npo
direction of H,. Solving equation (27.16) for (w/k) we
obtain

(%:)2 = ${(a2+b?) £ (a2 + b —4albZ}, (27.17)

which is called the dispersion relation for the wave propaga-
tion. This relation derives its name from the fact that a
medium in which the wavelength (or wave number) of a
wave is frequency dependent is called a dispersive medium;
the connection between the wavelength and the frequency
being called the dispersion relation. The quantity (w/k) is
called the phase velocity, and is the ratio of the distance
travelled by the wave for a phase change of 2z to the time
taken for this phase change to occur. In general, no
physical quantity travels with the phase velocity unless the
medium is non-dispersive. The velocity with which a
material disturbance is propagated is called the group
velocity + which we shall denote by ¢. The group velocity
c is related to w and k by the relation ¢ = dw/dk which
when applied to the dispersion relation (27.17), gives

% = ¢ = (3{(ad +b) £ (@G HPP 43D @119)

As would be expected, this is simply the result encountered
previously in equations (25.31b6, ¢) and shows that the

+ See Coulson, loc. cit., §§ 82 and 83.
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dispersion relation (27.17) describes magnetoacoustic
waves.

The construction of surfaces of normal velocity then
proceeds as before while the synthesis of solutions to initial
value problems by the superposition of monochromatic
waves of the type just discussed can be undertaken by the
usual methods.t

§ 28. Examples.

1.¥* Rewrite the one-dimensional isentropic flow
equations for an ordinary gas in terms of the coordinates
¢ = constant and ¢’ = constant, where ¢(x, #) = 0 is the
wavefront trace and ¢’ = t. Assuming that the density p
and the x-component of the velocity v are analytic functions
and are known along a curve S show how p and v can be
determined in the neighbourhood of S by successively
differentiating the re-written fluid equations and by using
Taylor’s expansion theorem. Hence show that when

2 2
¢ ., 9\ _ a2 (%) - 0,
ot 0x O0x
the derivatives of p and v with respect to ¢ are indeterminate.
Deduce from this that the characteristic curves ¢ = constant

represent curves in the (x, #)-plane across which the normal
derivatives of p and » become indeterminate.

2.* Let U be a column matrix with elements u,(x, £) and

u,(x, ) and define the matrices Z;_U and 66_1;’ to be the column
X

matrices formed by differentiating the elements of U with
respect to x and ¢, respectively. By writing the one-
dimensional isentropic flow equations of an ordinary gas
in the form

o +v % +p & 0

ot 0x 0x

1 Coulson, loc. cit.
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and
2
ot ox p Ox
show that they may be written in matrix notation as

U, LU _

=0,

ot ox

b

where 4 is a (2 x2) matrix and U is a column matrix with
elements p and v. Change to the coordinates ¢ = constant
and ¢ = constant, where @(x, ) = 0 defines the wavefront
trace and ¢’ = ¢, and apply the arguments used to derive the
characteristic equations directly to the matrix equation
obeying the usual laws for matrix manipulation. Hence
show that the characteristic determinant of the fluid
equations is just the characteristic determinant of A itself,
namely,

|A—2I| =0,

where I is the unit matrix and A = — 6_¢ 6_¢ . Show
ot Ox

also that the characteristic equations appropriate to each
of the two roots A are given by the product of the row latent
vectors of A with the matrix U, where the § operator is
applied to each element of U.

3. Show that the characteristic determinant for the one-
dimensional non-isentropic flow equations

=0,
ot 0x 0x

ov ov  a*dp , 10p
e
ot ox pox podS
?_S. -|-v?_S. =
it ox

b

’
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with p = p(p, S) and Z—B = a?, takes the form
0

(v—=2) 0 0o |
2 _n Lfoe)|_
a‘lp (v—24) p(&S) 0.
0 0 (v=2)

Find and interpret the three normal wave speeds A and
derive the characteristic equations appropriate to each of
these.

4. Consider the three-dimensional isentropic flow
equations for an ordinary gas with density p, sound speed a
and Cartesian velocity components v;,v, and v5, respectively.
Change to the coordinates ¢ = constant, y’ = constant,
z’ = constant and ¢’ = constant where ¢(x, y, z, ) = 0 is
the wavefront trace in (x, y, z, f)-space and y’' = y, 2/ = z
and ¢’ = t and show that the equations determining the
jumps in p, v,, v, and v5 normal to ¢ = 0 are

d¢ 0 6(/) 3¢ o\ v,
(5 e Tyt )[a¢]+"('a; aﬂ
o\ o], (2
+”<ay)[a¢]+” ( )[w] o

a? a¢>’ap' 0 o 0 o\ v, |

—\ =Nttt tey =) — | =0,
p <ax 6] " \ar TP Ty T a2 ) s

a® [\ op d L) o a¢ dv, |

—N =)=+ |= +vi =+, =+ =0,
p <a )_6(,6_ a0 ax Ty T az) Ge )

s _ .

(.l_ Q?) @ + .a_? +pl a_? .__ a¢ 603 = (.
p\oz)losp]| \ot dx
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Hence show that the characteristic determinant is

o  0p ,_ 0p . 0\
= 4y — 40y — +v3
(at U Ox 2 dy ’ 0z

)+ (3) ()

By using the fact that in the surface ¢ = 0 the differential
d¢ = 0, thus giving

0¢ ¢ a¢ 0\ ;. _

(%) dt+(grad ¢).dx =0,

or,

in which dx has components dx, dy and dz, show that

_ (99 —n.v=
(6t>/| grad¢|=n.v=v,

where n = (grad ¢)/ l grad ¢ | is the spatial normal to ¢ = 0
and v, is the normal wavefront speed.t Hence show that
the characteristic determinant can be written as

,—A)*—a’>=0
with the characteristic roots 1 = v,+a.
5. By changing to the coordinates ¢ = constant,

y’ = constant, z’ = constant and ¢’ = constant, where
¢ = 0 is the wavefront trace in (x, y, z, f)-space, y’ = ,
z’ = zand ¢’ = ¢, show that the characteristic equations of
the Maxwell equations
4nj 10D
curl H="Y 4 1aD
c ¢ 0t
arl E= -1 ‘Z—B,
c ot

t We have denoted the modulus of the gradient of ¢ by | grad ¢ |.
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can be written in the form

eAOE+cn xO0H = 0
and
UAOH —cn X O0E = 0

where B = uH, D = ¢E, n = (grad ¢)/| grad ¢ | is the unit
spatial normal to ¢ =0and A = — (%%) / | grad ¢ | is the

normal velocity of propagation of the wavefront. The
symbol J signifies either a jump in the derivative of the
associated variable normal to the wavefront trace or, if the
wave is entering a constant state, an infinitesimal change of
the variable itself. Show, directly from the characteristic
equations, that 0E, dH and n are mutually orthogonal and
hence that electromagnetic waves are transverse waves.
Find the characteristic velocities of propagation and show
that the electric and magnetic disturbances both propagate
with the same speed. Since the equations are linear, deduce
the characteristic surfaces as functions of time.

6.* Using the equations describing the one-dimensional
isentropic flow of an ordinary gas show, by forming the
differentials of density p and velocity v along any member of

the C*) family of characteristics defined by Z—): =v+a,

that
do _ 00 _, 00
dt ox ox

do _ ov _a’dp
dt ox p ox

along any C'*) characteristic. Hence show that these
equations may be integrated to give

v+ J'_a_@ = constant along any C*) characteristic.
p
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Show also that

v— j-@ = constant along any C‘™ characteristics,
p

_ .. . d
where the C¢™) characteristics are determined by :11: =p—a.

If the C7) characteristics are parameterised by requiring
that ¢(x, 0) = a(x) and the C¢~) characteristics are para-
meterised by requiring that ¢(x, 0) = B(x), show that

v+ j‘ld_p =r,(p) along C*) characteristics
P
and

v— J adp _ r_(«) along C'? characteristics,

where the r.(«) and r_(f) are functions only of « and f,
respectively, and are called Riemann invariants.

7.* Suggest how the Riemann invariants of Example 6
may be used to determine p and v at a point P in the (x, f)-
plane when the C(*) and C(™) characteristics through P are
known and intersect an initial curve S in the (x, f)-plane
along which p and v have been specified. Show that if a
C™ characteristic C*) is adjacent to a constant state
(pos Vo) then r_(a) = r_, is constant in the flow adjacent to
the constant state, which is then called simple wave flow,
and that in the region of simple wave flow the C(*) family
of characteristics becomes a family of straight lines.}

8. Derive the characteristic determinant for the
Lundquist equations and show that the characteristic
relation is

eu(en=b){(chi—a’eh—b)~ci(b*— b))} =0,

t Compare with, Rutherford, Fluid Dynamics, 1959, §49. This
type of flow also includes the two-dimensional expansion process
experienced by an ordinary gas when expanding round a corner.
This is often called a Prandtl-Meyer expansion.
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2

where a is the speed of sound, b = / ‘%}L is the Alfvén
77 np

speed, by = [“= is the Alfvén speed in the x-direction

np
and ¢, = | A—v, | is the speed of the wavefront relative to
the fluid.

9. Show by considering the Lundquist characteristic
equations that the disturbance characterising an entropy
wave in which H, = 0 takes the form

OH = ¢K,
ov =et,
65 =81,
and
o 1/0
op = — —z(a—gsl'l‘ ‘ﬁn—H Ks),

where ¢ and ¢; are parameters describing the size of the
infinitesimal jumps, ¢ is a unit vector perpendicular to n,
and K is an arbitrary vector perpendicular to n. Hence
show that the transverse components of velocity and
magnetic field may undergo an arbitrary infinitesimal jump
but that the density and pressure jumps are subject to the

single condition
2
op* = 5(p+ lffl—) =0.
87

10. By considering the magnetohydrodynamic character-
istic equations appropriate to an incompressible fluid show
that in an Alfvén wave

Cp = bx’

ov, = F \/ £ sgn (H)SH,
4np

I .
-~ (4_%) HoH,

op
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and
op* =
where the suffix 7 denotes a transverse vector with respect to

the wavefront normal. Compare the Alfvén wave with a
general transverse wave.

11. Assume a constant state with zero flow velocity v,
and by considering the propagation of a weak plane wave
from a plane source which is itself distant R, from the
origin with its normal inclined at an angle 0 to the x-axis,
prove that the wavefront emanating from a cylindrical
source of radius R, that is centred on the origin is given by

x =Rycos 0+ | c,cos 0~ ‘—if—"sinf) t,
do

y=Rysinf+ (c sin 0+ d0 * cos 0)

Show that the equation of the slow wavefront is given by

X Rycos@ s s sin“ 0

== +cos 0= + t
b b T {b (o B)[(1+5)—as cos? 0]*}
and

Yy Rysinf | . s scos* @

2 - 0% - .
b b o {b (e/D)[(1 +5)*+4s cosm]%}

Derive the corresponding equations for the wavefronts of
the transverse and fast waves.

12. Assume one-dimensional isentropic magnetohydro-
dynamic flow in which H, = 0, and show that v, and v, are
constant along lines of flow. Hence prove that”

Doe () =0, L2iog ’i>=o,
Dt p Dt H,

H,=k,p, H,=k)H,

and that
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where k; and k, are constants. Combine the remaining
equations to show that for a polytropic gas

ap dap ov
- + . — + X =0’
ot " ox Pk

) o uk?  a*\op
4o, 2+ (—+— )= =0
ot ox (41: p/op

Prove that these equations are hyperbolic and that ¢,
the wave speed relative to the fluid, is given by

¢y = +(a®+ b2},
which is only density dependent.

13. Sketch the geometrical construction of the slow
wavefront from the surface of siow normal velocity that is
appropriate to a fixed point source in a uniform region.
Taking the x-axis parallel to the magnetic field H, and
letting 0 denote the angle between H and the wavefront
normal, show that the cusp of the slow wavefront that lies
on the positive x-axis is generated as the limit of the
envelope of the surface of slow normal velocity as 60— 3=.
By considering the limiting form as §— 1x of the parametric
representation of x as a function of 6 for the slow wavefront,
slow that at time # the slow wavefront cusp on the positive
x-axis_is distant from the point source by an amount

abt/(a®*+b*)*, where a is the sound velocity and b is the
Alfvén speed.



CHAPTER V

MAGNETOHYDRODYNAMIC SIMPLE WAVES

§ 29. One-dimensional wave propagation. Of the many
possible types of magnetohydrodynamic wave motion that
may occur, just as in ordinary gas dynamics,} the particularly
simple wave motions belonging to the class of one-
dimensional flows that can exist adjacent to a region of
constant state are of fundamental importance. The
importance of these flows stems from the fact that they
describe the basic transition flows of magnetohydro-
dynamics such as the compression and expansion processes
that must take place if a gas is to undergo a change from
one constant state to another. Here we use the expression
“region of constant state ” to signify a region in which p,
vy, Hy, ..., S all have constant values. Later we shall show
how these special flows may be combined with certain non-
differentiable solutions of the magnetohydrodynamic
equations called shocks in order to solve some simple but
interesting magnetohydrodynamic flow problems.

So, taking equations (25.18) to (25.24) as our starting
point, let us first notice that since, by supposition, the wave
is adjacent to a region of constant state, we may use the
results of § 24 to replace the jumps ép, dv,, ..., 4S in the
derivatives of p, v,, ..., S by the differentials dp, dv,, ..., dS.
By so doing we obtain the following one-dimensional form

t See Rutherford, Fluid Dynamics, 1959, §§ 49 and 50.
155
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of the magnetohydrodynamic characteristic equations
Fec,dp+pdv, =0, (29.1)

- dp )7
Wpdv+a’dp+ | == )dS+ = HdH, =0, (29.2
TPt aap <as> g Ay =0, (292)

Fepdv,— £ HAH, =0, (29.3)
4n ’
Fepdv,— X HdH. =0, (29.4)
4n
Fec,dH,+ H,dv,— H.dv, =0, (29.5)
Fec,dH,—H.dv, =0, (29.6)
and
Fe,dS =0, (29.7)
while the solenoidal condition div H = 0 shows that
H, = H,, (29.8)

is constant.

Then, by successively identifying ¢, with the roots ¢,
¢,, b, and 0 obtained in § 25, we can define special one-
dimensional fast, slow, transverse and entropy waves. These
waves represent particularly simple solutions of the
magnetohydrodynamic characteristic equations and,
although general wave motion is governed by the Lundquist
partial differential equations, we shall now show that in
this special case the behaviour of all the physical quantities
is in fact determined by a single ordinary differential
equation. We shall also show that it is a direct consequence
of this result that the dependent variables p, v,, H,, ..., S
which are involved in the wave motion adjacent to the
constant state may all be expressed as functions of one of
these dependent variables, say p. Magnetohydrodynamic
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waves having this very special property will be called
magnetohydrodynamic simple waves.f

§ 30. Contact surfaces and transverse simple waves. Let
us start by discussing contact surfaces and transverse
simple waves since, unlike fast and slow simple waves,
certain of the dependent variables involved in them can
undergo finite jumps across the wavefront. This property
simplifies their description by allowing the use of jump
conditions in place of differential equations. The so-called
entropy wave or contact surface is of particular value when
matching flows involving dissimilar fluid states, while
transverse simple waves assist in aligning the magnetic
fields in adjoining flows.

In § 26(d, ¢) we have already examined the relationships
that exist between the jumps in the derivatives of the
dependent variables, it being assumed there that the
functions themselves were continuous. However, we are
now dealing with differentials of the functions and so, under
certain conditions, finite jumps in the dependent variables
themselves may occur. In particular, the fact that in
transverse wave motion the jumps v, and 6 H, were possible
now implies that finite jumps must be allowed for in the
z-direction. Thus, the device used to simplify the equations
in § 25, whereby the axes were rotated to make H, = 0, is
no longer of value since H, might now experience a finite
jump across the wavefront.

To allow for this possibility we must reconsider equations
(25.8)to(25.16). When deriving the characteristic equations
(25.18) to (25.24) we omitted the terms involving H, in
equations (25.9) and (25.14), otherwise our results were
quite general. If, now, we retain these terms, equations
(25.19) and (25.23) must be supplemented by the addition

T It is possible to re-phase this definition into a mathematical

statement concerning a singular flow for which the hodograph trans-
formation (Rutherford, loc. cit., §§ 38 and 52) becomes invalid.
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of the terms iu— H,0H, and Hdv,, respectively. Thus, for
7

the consideration of finite jumps across contact surfaces and
transverse simple waves we must supplement equations

(29.2) and (29.6) by the addition of the terms f— H,dH, and
4

H.dv,, respectively.

A contact surface across which finite jumps can occur
is then described by the equations (29.1) to (29.8) modified
with ¢, = 0. Equation (29.7) shows that dS is arbitrary
and hence that the entropy can experience an arbitrary finite
jump across a contact surface. The remaining modified
equations show that provided H, + 0, H, v and p are
continuous across a contact surface and that there is no
mass flow across the wavefront. The density and entropy
are related to the pressure by the equation of state of a
polytropic gas (25.6) and by the expression

Jp
2dp+ (%) ds =0 30.1
o2dp (as) (30.1)

derived from the modified equation (29.2).

The fact that the velocity vector v must be continuous
across a magnetohydrodynamic contact surface gives rise
to an important difference between classical fluid dynamics
and magnetohydrodynamics. In ordinary fluid dynamic
shear flow, in which adjacent fluids are in contact but do
not mix, the only requirement to be satisfied across their
interface is that the normal components of fluid velocity on
either side of the interface should always be equal. Thus
for a shear flow in an ordinary fluid a tangential velocity
discontinuity across the interface is permitted, whereas in
magnetohydrodynamic flow in which H, # 0 it is not. A
magnetohydrodynamic shear flow is only possible if
H, = 0, and then a discontinuity can also occur in the
transverse magnetic field H, (see Example 1, § 37).
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Integrating the one-dimensional form of equation (2.9)
with respect to x and differencing the result across the wave-
front shows that a transverse surface current flows in the
wavefront whenever [H,] # 0. The transverse surface
current J is easily seen to be given by

J= S ix[H], (30.2)
4n

where i is the unit vector along the x-axis.

A particular limiting case of a contact surface occurs
when the flow takes place adjacent to a vacuum region.
We have already seen that when H, # 0 the pressure p will
be continuous across the contact surface. Combining this
result with the equation of state for a polytropic gas (25.6)
and the fact that the density is zero in the vacuum region
then shows that the density is also zero behind the contact
surface. Hence, since this implies that dp = 0, equation
(30.1) then shows that dS = 0 across such a degenerate
contact surface. In the next Section we shall see that a
contact surface of this type occurs as a limiting form of a
magnetohydrodynamic simple wave and serves to separate
it from a vacuum field.

If, alternatively, we assume that H, = 0, equations
(29.3) and (29.4) show that the transverse magnetic field
vector H, can experience a discontinuity across the contact
surface. It then follows directly from the modified equation
(29.2) that, even though the fluid density is zero in the
vacuum region ahead of the contact surface, it can be non-
zero behind it. This type of contact surface is also related
to a limiting form of magnetoacoustic wave and separates
it from a vacuum field.

The modified equations (29.1) to (29.7) describe finite
transverse simple waves when we set ¢, = b,, the Alfvén
speed in the x-direction. It is easily shown that

dp = dv, = dS = 0, (30.3)
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while dH, is arbitrary in size and is related to dv, by the
expression

dv, = F \/ £ sen (H)dH,. (30.4)
4np
Using results (30.3) in the modified equation (29.2) gives
H,dH,+HdH, = 0 (30.5)
or
d(HY) =0, (30.6)

showing that although H, experiences an arbitrary jump
across the transverse wavefront, the magnitude of H,
remains constant.

The solution H, to these equations may be parameterised
in terms of an angle ¥ and expressed in the form

H, = Hy, sin¥, H, = Hy,cos¥, 30.7)

where H,, is the magnitude of H,. Hence the transverse
magnetic field vector H, can experience a finite rotation
when crossing a transverse simple wave and results (30.3)
show that p, v, and S will remain constant. Transverse
simple waves thus describe rotational discontinuities in the
transverse magnetic field. It is easy to see that the fluid
2
pressure p and the total pressure p* = p+ I_{é@_ will
7

be continuous across a transverse simple wave.

§ 31. Fast and slow simple waves. Fast and slow
magnetohydrodynamic simple waves propagate with the
normal wave speeds ¢, and ¢, respectively. The discussion
of § 26(a), in which H, was set equal to zero, showed that no
z-components of velocity or magnetic field are involved in
the compatible jump conditions for the derivatives. Accord-
ingly, when we consider finite fast and slow simple wave
disturbances, we may assume that H, = 0. Thus fast and
slow magnetohydrodynamic simple waves, or fast and slow
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magnetoacoustic simple waves, are described by equations
(29.1) to (29.8) in which ¢, is identified with ¢, or c,
respectively.

Since we shall assume that ¢, is neither equal to b, nor to
zero, equation (29.7) then shows that S is constant.
Combining equations (29.4) and (29.6) now gives

(ch—bdH. =0

or, because ¢, # b,,
dH, = 0. (31.1)

Hence, in the special case of fast and slow magnetoacoustic
simple waves, the flow is completely described by the four
equations (29.1) to (29.3) and (29.5). These have as their
characteristic determinant the expression

Feo  p 0 0
a> Fep O nH,
4n
=0, (31.2)
0 0 Fc ﬁl—é
4np
0 H, -—H, ¥,

which we now re-write as
c,fby2 = (c2—a®)(c2-b?). (31.3)

Comparing the roots of this equation with equations
(25.31b, ¢) we see, as we would expect, that ¢, may take
the values ¢, or c;.

By eliminating dv, between equations (29.1) and (29.2)
we find that

(a*—c2)dp+ ﬁ d(H?) =0, (31.4)
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while by introducing the non-dimensional variables « and
through the equations

2
a= (31.5)
a
and
02
equation (31.3) becomes
H} =(a—1)(f—a YHHZ (317

Then, combining equations (31.4) and (31.7), dividing by
pa® and using the definition of  we have, since H, = con-
stant, that

0%+ L ira—1—ab] =
! oc)p +Zﬂd[(a DB-«"H]=0. (318

However, f may be written in the form

a2

b= 1HZ[Amp

which, for a polytropic gas with pressure p and adiabatic
exponent y, becomes

p=—Tr.
HHZ/An
Now, since H, = constant, 8 is proportional to p and so we
can write
p=pB (31.9)
and
p = pp'7, (31.10)
where the constants p and p are given by

p=—- and p= (—”-)W (31.11)
ypb2 S\ '



§32 SIMPLE WAVES 163

By defining 42 by the relation

a* = yplp (31.12)
it then follows directly from the definition of « that
c2 = gPapt=1m, (31.13)

If we now make use of the relationship between f and p
that is displayed in equation (31.10) we can re-write
equation (31.8) as the ordinary differential equation

ag _ (L)(_“fﬂ_‘l_) (31.14)
de \2—9/a?(a—1) '

This equation, which was first derived by K. O.
Friedrichs, determines the variation of § as a function of «
throughout the simple wave region. Later, we shall use it
in conjunction with other equations from this section in
order to derive the behaviour of all physical quantities
across simple waves.

Since af = c2/b2, it follows directly from inequality
(26.2a) that for the fast wave region, denoted by (+),

a,fp=z1 and o, 21, (31.15q)

while for the slow wave region, denoted by (—), it follows
from inequality (26.2b) that

a_f<1 and a_. =1, (31.15b)

with § = 0 and o = 0. Hence the slow wave region lies
to the left of the line = 1 and the curve f = 1/a, while the
fast wave region lies to the right of these lines. Equation
(31.7) show that H, is complex outside the (+) and (—)
regions which are illustrated in Fig. 16.

§ 32. The singularities of the equation connecting o and g.
An examination of equation (31.14) shows that df/du
becomes infinite along the linesa = 0 and & = 1. However,
the point P on the line « = 1, at which = 1, is exceptional,
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for there both the numerator and the denominator of the
right-hand side of equation (31.14) vanish.

BA 2 Hy complexfp ,
Fast
aff=1 L: (+)
P
1.0 2
slow
)
E Hy complex
0 1.0 T
\ ~ J -
a- o+
FiG. 16

To determine the behaviour of the solution in the
neighbourhood of P we set

G=1-a and f=1-P (32.1)
when, to first order, equation (31.14) becomes

ap _ (._V_XL‘T B>, (32.2)
dé 2—y o

It is convenient to parameterise equation (32.2) in terms
of a single valued differentiable parameter s by writing

B _ (v \ s
7 (2_"> a4+ (32.30)

i
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and
da
— =d. 32.3b
o ( )
Thus the integral curves of equation (31.14) in the
neighbourhood of point P are determined by equations
(32.3a, b). These equations are linear and so we may seek
a solution in the form

i@ = Ae*, B = Be*. (32.4)

Substituting these values into equations (32.3a, b) we
obtain the following equations connecting 4, B and A:

2y*A+(*=2)B = 0, (32.5a)
(A-1)4 = 0, (32.5b)
where
y* = (-”—) (32.5¢)
2—y

If equations (32.5a, b) are to be compatible, the determinant
of the coeflicients of 4 and B must vanish from which we
find that either 1 = 1 or 1 = y*.

Letusnowset 4; = y*and 1, = 1 and let 4 = A4, and
B = B; be non-trivial solutions of the homogeneous
equations (32.5a, b) corresponding to A= A,(i=1, 2)
respectively. We then find that

A, =0, A, =1, By =1, B, = —2"* 32.6
1 — Y 2 — 4 1= 1 —()’*_1). ( .)
Thus for i = 1 we have
=0, f=e", (32.7a)
while for i = 2,
N
e f= 2 (32.7b)

(r* —1)

The general solution to equations (32.3a, b) which is
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a linear combination of these results thus has the para-

metric form
& = cye* (32.8q)
and

where ¢; and ¢, are arbitrary constants.

Now, apart from this general solution, equations
(32.7a, b) show that two special straight line solutions L,
and L, are defined by the equations

Li:&=0 (32.9a)
and
....2-y* .
Ly: p=— . 32.9b
2 7 =1) a { )

All solutions of equation (31.14) are tangent to the line
L, at the point P which is called a node 1 of the equation.
Consequently, the common gradient of all the integral
curves at the point P is just the gradient of the line L,, and

so at point P
* -
e _ _ (2 \_ = (32.10)
do y*—1 y—1

The lines L, and L, are shown together with representa-
tive integral curves in Fig. 16 where, since y>1, the line
L, has a negative gradient. Lines L; and L, are coincident
for y = 1. Thus, as y increases, so L, tends asymptotically to
the tangent to the curve § = 1/a at point P. Inspection of
Fig. 16 together with inequalities (31.14a, b) shows that
fast waves occur in the region marked (+) and slow waves
occur in the region marked (-).

In the slow wave region (—) we have a_ < 1, fa_ S 1
and so fa2 < Pa_ <1, while —1 £ «_—1<0. Thus it

t See, for example, Ince, Integration of Ordinary Differential
Equations, 1952, p. 37.
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dap

follows at once from equation (31.14) that g is a positive

function of « _ throughout the slow wave r;agion. Using
this result to examine the behaviour of % shows that
df|dx is a positive monotonic decreasing function of a _
throughout the slow wave region (—). Similarly, df/dw is
a positive monotonic increasing function of «, throughout
the fast wave region (+).

It follows directly from this analysis of the node at
point P that no physical process exists by which fast and
slow waves may be connected. To see this we notice that
the only way to connect a solution in the slow wave region
with one in the fast wave region is through the point P.
However, as we have already shown, apart from the special
solution corresponding to the line L,, all the other solutions
are tangent to the line L, at P having a negative slope
dB|de. = —y/(y—1) at that point.

Consequently, since dff/do has been shown to be positive
throughout the fast and slow wave regions, the general fast
and slow wave solutions cannot be joined through P.
However, there still remains the line L, linking the fast and
slow regions. The equation of the line L, is « = 1 and so,
using the definition of «, we see that everywhere along L,
we must have ¢ =a®  Consequently the disturbance
corresponding to line L, is only an ordinary sound wave and
we have thus demonstrated the impossibility of connecting
general slow and fast waves.

§ 33. Generalised Riemann invariants. Examples 6 and 7
of § 28 have already indicated something of the properties
and use of the ordinary Riemann invariants which can be
defined for pairs of hyperbolic first-order equations involving
two dependent and two independent variables. Specifically,
they indicated how in an ordinary two-dimensional
isentropic gas flow an invariant functional relationship
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exists along each characteristic curve between the density
and the velocity. This invariant expression, called a
Riemann invariant, has a different (constant) value along
each characteristic and so, if the constant values associated
with the C(*) and C(7) characteristics through any point P
are known, the invariant relations may be solved to deter-
mine the density and the velocity at point P. In the special
case of simple waves in an ordinary gas (see Example 7,
§ 28), one of the two families of characteristics reduces to a
family of straight lines, thus simplifying the problem and
enabling the flow to be completely determined in the simple
wave region.

Since the equations of one-dimensional magneto-
hydrodynamic flow (29.1) to (29.8) involve more than two
dependent variables, these ordinary Riemann invariants
are not directly applicable. However, we shall now show
how equation (31.14) can be used to introduce generalised
Riemann invariants in magnetohydrodynamic one-
dimensional simple wave flow. These generalised Riemann
invariants are no longer constant along characteristics as is
the case with ordinary Riemann invariants. Nevertheless
one set of characteristics is still a family of straight lines
along each of which all the dependent variables can be
expressed in terms of one dependent variable, say the
density p (this property is also true in ordinary simple
waves).

Let us start by noticing that equation (31.14) has an
integrating factor (x—1)"?~?_ Using this to integrate
equation (31.14) we obtain the following expression for the
generalised Riemann invariants K, and K_ appropriate to
the slow wave region (=) and the fast wave region (+),
respectively:

a
Ky=pB|og—1|7"+y* j az? ey —1 |74+ ey, (33.1)
%

where «,, is the value of « at the start of the simple wave, and
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the upper and lower + signs correspond to the fast and slow
waves, respectively. The generalised Riemann invariants
K, depend only on « and f, which are in turn dependent on
the magnetic field and the density. For this reason the
invariants K, are often called magnetic Riemann invariants.

To obtain the appropriate x-invariants involving the
velocity v, we use the fact that, in terms of a and 8, equation
(29.1) can be re-written in the form

dv, = gy 'dut A UIMgR. (33.2)

where ¢ = +1 or —1, corresponding to the minus or plus
signs of ¢, in equation (29.1), respectively. Integrating this
equation then gives the generalised x-Riemann invariants
K., and K, _ appropriate to the fast wave region (+) and
the slow wave region (—), respectively, where

B
Kxir-v,—sy"lj ol fHA+mgE (33.3)
Bo

Here B, is the value of § at the start of the simple wave, ¢
has the same meaning as in equation (33.2) and the + signs

correspond.

By eliminating dH , from equations (29.3) and (29.5) and
using equations (31.5) to (31.7) and (33.2), it follows that
(see Example 3, § 37)

-1
dv, = Fey~'gp 0+ \/ sgn (H,oH,)dp, (33.4)

where ¢ has the same meaning as before, H 4, denotes the
value of H, in the constant state ahead of the wave,
sgn (H o H,) denotes the sign of the expression H,,H, and
the upper and lower signs correspond.
Integration of this equation then yields the generalised
y-Riemann invariants K, and K,_ appropriate to the fast
wave region (+) and the slow wave region (=), respectively,
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where
- ﬂ (Xi ""1
K, =v,+ey” sgn (H,oH,) | 4p~1+a/m \/—— dp.
Bo aiﬁ_l
(33.5)

The upper and lower &+ signs again correspond and ¢ and
Bo have their previous meanings.

Since we are assuming that the gas is polytropic, we also

have the fourth invariant G given by the expression

G=pp, (33.6)
which is implied by the equation of state (25.6) and by the
fact that S is constant.

The lower limits o and B, of the integrals determining
the invariants K, K., and K, all correspond to the
initial conditions that are present at the start of the simple
wave. These are related to H(= H,,) and to H,, by
equation (31.7). Solving for a, we find that

_ (Ha+ 1+ Bo)HE) + /(HE + (1 + Bo)H )~ 4Bo Hio
+ = 2 ’
2ﬁ OH x0

o

(33.7)

where the upper and lower signs correspond, respectively.
Equation (33.7) thus determines the two initial values
o = ag4 and a = ay_ that correspond, respectively, to the
fast wave (+) and the slow wave (—).

The initial conditions (g, o) determine the constants
K, associated with the magnetic Riemann invariants
through the relations

K:t = ﬁo l “O;t —"1 I?‘. (33.8)

The functional dependence of B on «, as determined by
equation (33.1), is of fundamental importance in the
determination of the variation of physical quantities across
magnetoacoustic simple waves. Although it is only possible
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to evaluate the integral in equation (33.1) analytically when
y* assumes special values (e.g., in the case of a monatomic
gas, since then y = 5/3 and y* = 5), a numerical solution
by quadratures is always possible.f Alternatively, equation
(31.14) can be numerically integrated using a technique
such as the Runge-Kutta method.}

The variation of the pressure p, the density p, the
magnetic field H, and the x and y-components of velocity
v, and v,, respectively, are then determined by the equations:

P = PP, (31.9)

p = pB', (31.10)

H} = (a—1)(B—a"")HE, (1.7
8

Kyy =v,—gy~! J dod p~31*+0Mgp (33.3)
Bo

and

(]
K,y =v,tey”! j gp-#L+am \/ dB (33.5)
Bo ayf—

§ 34. The variation of physical quantities across fast and
slow waves. A qualitative knowledge of the behaviour of
physical quantities across magnetoacoustic simple waves
can easily be obtained from the results of the two previous
sections. If we consider a wave emanating from a given
initial state characterised by the point (ag, f,), then fast
waves will result if (ag, Bo) lies in the (+) region of the
(«, B)-plane, whereas slow waves will result if (aq, Bo) lies
in the (—) region of the plane. The unique integral curve
passing through («o, fo) Will then determine, through its
particular functional dependence of § on a, the variation of
all the physical quantities involved in the flow.

t See Noble, Numerical Methods 2: Differences, Integration and

Differential Equanons, 1964, Chapter IX.
1 Noble, loc. cit., § 10.5
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Thus, it follows directly from equations (31.9), (31.10)
and (33.2) that when ¢ = 1,

v, changes in the same sense as p, p and f,
while when ¢ = —1,
v, changes in the opposite sense to p, p and f.

A compression wave is thus characterised by increasing f3,
while an expansion or rarefaction wave is characterised by
decreasing . The constant ¢ is +1 for a wave advancing
in the positive x-direction and —1 for a wave advancing
in the negative x-direction (cf. Equations (25.324, b)). The
behaviour of v, p and p across compression and rarefaction
magnetoacoustic simple waves is thus directly analogous to
their behaviour in the corresponding wave phenomena in an
ordinary gas.

Let us now consider a slow wave propagating in the
positive x-direction into a constant state in which p = p,,
p = po, vx =0, =0, H,>0 and H,,>0. This constant
state will be characterised by a point (ag, Bo) in the (—)
region of the (a, f)-plane.

If we assume a slow compression wave starting from the
point (a,, f,) then B, and hence «_, increase. Equation
(31.7) then shows that H, decreases, ultimately vanishing
when Ba_ = 1. Such a wave is called a switch-off slow
compression wave since the transverse magnetic field H,
vanishes along the line fa_ = 1, at which stage the com-
pression is said to be complete. Since a_ <1, it then follows
that the value of f§ attained at complete compression exceeds
unity and so, from its definition, we see that in the complete
compression state a>b,. By taking the lower correspond-
ing signs in equation (33.4), we also see that the velocity v,
increases across a slow compression wave. Recalling the

pH?

definition of the magnetic pressure p,, = o we at once
n
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see that in a slow compression wave p,, decreases as the
pressure p increases. When complete compression is
attained, p,, = 0.

Alternatively, for a slow rarefaction wave starting from
the point («o, o) in the («, f)-plane f, and hence « _, decrease.
The integral curve through («g, B,) then terminates on the
line B = O representing the state of complete rarefaction in
a slow wave. By using the definition of §, together with the
polytropic gas law, we then see that the density p and the
pressure p vanish on the line § = 0, corresponding to the
occurrence of cavitation. Equation (31.7) shows that H,
increases across a slow rarefaction wave as f§ decreases,
while equation (33.4) shows that the transverse velocity v,
also decreases. The magnetic pressure p,, increases across a
slow rarefaction wave as the pressure p decreases; the
complete rarefaction being determined by p = 0.

If the initial point (&g, B,) is taken on the line fo_ = 1
then, by analogy with switch-off wave, the wave is called a
switch-on slow rarefaction wave.

In a fast compression wave starting from similar constant
physical conditions associated with a point (g, fo) in the
(+) region of the («, f)-plane and propagating in the
positive x-direction B, and therefore «,, increase and
equation (31.7) shows that H, increases. Consequently p
and p,, increase, while from equation (33.4) we see that v,
decreases. Similar arguments show that in a fast rare-
faction wave, as B decreases so also do H,, p and p,,, while
v, increases. The magnetic field H, and the magnetic
pressure p, vanish on the curve fa, = 1 when the fast
rarefaction is complete; however, the pressure p remains
finite and so cavitation does not occur.

A simple modification of the above argument serves to
indicate the variation of v, with § when the fast and slow
waves are propagating in the negative x-direction (see
Example 6, § 37).

The behaviour of p, p,, and H, are summarised in Fig. 17.
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The arrows on the integral curves indicate the direction of
change of B, while the quantities adjacent to these arrows
show the variation of p, p,, and H, with f. The symbol 1
signifies an increase while the symbol | signifies a decrease
in the quantity to the left of the symbol.

The fact that the flow adjacent to a region of constant
state is always a simple wave follows directly from their
defining property that all the dependent variables are
expressible in terms of one dependent variable, say p. This
fact, when used with the property of characteristic curves
that discontinuities in derivatives of dependent variables
can take place across them, then shows that the straight
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characteristics bounding a constant state and a simple
wave can be superimposed.

Having demonstrated that the physical variables in
magnetoacoustic simple waves are all expressible in terms
of the parameter f, we shall now use this to establish an
important property of these simple waves. Since the
development of a wave originating from a given initial
state characterised by (e, o) is uniquely determined by the
integral curve through the point (x,, B,), it follows that «
and, consequently, ¢, are functions of B (see Equation
(31.5)). Thus the fast and slow families of characteristic
curves C(*/) and C'*9, respectively, that are determined by
equations (23.8), (25.32a) and (25.32b) can be written

dx

i vx(B) £ (B, (34.1)

where the C*/) curves correspond to ¢, = ¢, and the
C*9 curves correspond to ¢, = ¢;,. The wave propagation
speed dx/dt in magnetoacoustic simple waves is thus a
function only of f.

Now a constant value f = B* specifies a constant state
for the physical variables p, H,, v, and v, and also causes
the right-hand side of equation (34.1) to become constant.
When ¢, has been identified either with ¢, or ¢, and the sign
has been chosen (the + sign signifying a wave advancing in
the positive x-direction and the — sign a wave advancing
in the negative x-direction), equation (34.1) can be integrated
to give a family of straight lines. This family of straight
line characteristics then describes fast or slow, forward or
backward facing magnetoacoustic simple waves. Each of
these characteristics has a different gradient, determined only
by the value of B = f*, and each represents a line of
different constant physical state in the (x, #)-plane. The
other three families of characteristics in a particular flow
that are obtained by identifying ¢, with the remaining three
values of +c¢, and +c¢, will, in general, be curved. Hence



176 MAGNETOHYDRODYNAMICS § 34

our earlier assertion concerning the existence of a family of
straight line characteristics, along each of which the
physical state is constant, is proved.

When the right-hand side of equation (34.1) is such that
characteristics corresponding to different values of f diverge
with increasing time then the family of straight line
characteristics in the (x, 7)-plane appears as in Fig. 18(a).
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Should the dependent variables in the magnetohydro-
dynamic equations be functions of the ratio £ = x/t, instead
of functions of x and ¢ separately, then the family of straight
line characteristics appears as in Fig. 18(b). These waves
will be called centred simple waves; a name suggested by
the behaviour of the characteristics at the origin.}

1

te

FiG. 19

Alternatively, when the right-hand side of equation
(34.1) is such that characteristics corresponding to different
values of f§ converge with increasing time, then the family of
straight line characteristics appears as in Fig. 19. Since
different constant physical states are associated with each
different characteristic, the point of intersection of two
characteristics must correspond to a point at which a simple

t Since solutions at different points in the (x, #)-plane are similar

when x and ¢ are increased in proportion, these flows are sometimes
called similarity flows.
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wave solution breaks down due to non-uniqueness. In the
next chapter we shall see how this difficulty is resolved by
introducing the notion of a shock wave across which the
dependent variables experience finite jumps. In Fig. 19,
this shock wave will form at the first point (x,, ¢.) at which
the characteristics intersect.

§ 35. The change of wave profile. The general ideas of
the final part of the previous section can be expressed more
specifically in terms of compressive magnetoacoustic fast
and slow simple waves advancing in the positive x-direction.
In such compressive waves 8, and hence a, increase. We
have already seen that v, increases with 8, and so the wave
propagation speed 4 = v+ ¢ also increases with f, because
¢z =aa®. To relate A to a physical variable we now use
the fact that f = (p/p)’, showing that 1 is an increasing
function of p. This is the situation illustrated in Fig. 19.
The speed of propagation of different parts of fast and slow
magnetoacoustic simple waves thus accelerate with increas-
ing density causing the wave profiles to change their initial
shapes and to steepen into fast and slow shocks. A similar
argument applies to the formation of fast and slow shocks
when the wave propagates in the negative x-direction.

When the waves are rarefaction waves, A is a decreasing
function of § or p, and the waves smooth out their initial
profiles with increasing time. The change of profile of a
typical physical variable is shown in Fig. 20 with the wave
tending to a shock at x = x, t = ¢..

§ 36. Elementary applications. To illustrate the previous
ideas we shall now consider some elementary applications.

(i) Flow adjacent to a constant state (H, = H, = 0)

Let us consider the flow adjacent to a constant state in
which H, #0, H,=H, =0, p=py, v,=0, and
v, = v,. Interms of the (a, f)-plane this state corresponds
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to a point either on the curve aff = 1 or on the line o = 1.
(Why?) Consequently dv, , as determined by equation
(33.4), is infinite, as also is dH, when determined by
differentiation of equation (31.7) in conjunction with
equation (31.14). This shows, as might be expected, that on
these exceptional curves the method of solution in terms of
o and B is not applicable.

tok

FiG. 20

To resolve this difficulty we need only to return to the
original magnetoacoustic equations (29.1) to (29.3) and
(29.5). These have the determinant (31.2) as their character-
istic determinant and in the constant state in which H, = 0
the first pair of equations becomes decoupled from the
second pair of equations. The characteristic determinant
has the characteristic roots ¢, = b, and ¢, = a. The root
¢, = b, has already been examined in connection with
transverse waves in § 30 (when, due to the rotation of the
magnetic vector, we retained the component H,) and so we
shall consider only the root ¢, = a. From equations (29.1)
and (29.2) we obtain

dv, = + 20 dp (36.1)
Qo
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while, since we shall assume that b, # a, it follows directly
from equations (29.3) and (29.5) that dv, = dH, = 0. The
velocity component v, thus retains its constant value v,
across the flow region while the y-component of the
magnetic field, H,, remains zero. Hence we may omit the
suffix zero from equation (36.1) which then describes the
entire flow. There is thus no switch-on simple wave
adjacent to a constant state region in which H, = H, = 0,
and the integrated form of equation (36.1) leads directly to
the ordinary gas dynamic Riemann invariants (see Example
6, § 28). Hence the flow adjacent to a constant state in
which H, = H, = 0 is an ordinary gas simple wave.

(ii) The simple piston problem

A typical problem, in which gas is set in motion by
mechanical means, is the gas flow induced by withdrawing
towards the left a large plane piston from a long tube that
is filled to the right with a perfectly electrically-conducting
gas which is initially at rest. When there is no superimposed
constant arbitrary magnetic field H,, the flow is an ordinary
gas rarefaction wave. In such an ordinary gas flow the gas
will expand and attempt to follow the piston, while the
simple wave which advances into the gas at rest (the
constant state region) will extend up to the piston face until
cavitation occurs (see Example 7, § 37).

If the piston withdrawal velocity V(f) is an increasing
function of ¢, then, identifying the x-axis with the axis of the
tube, the piston path in the (x, £)-plane is a curve similar to
the dotted line in Fig. 18(a). Along each straight character-
istic issuing from this curve the density and velocity are
constant, their precise values being determined by the
constant state conditions and by V(¢). Alternatively, if the
piston is assumed to be withdrawn at a constant velocity V,
then the expansion process is a centred simple wave as
shown in Fig. 18(b) while the piston path in the (x, £)-plane
is similar to the straight dotted line in that Figure.
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Waves in which the fluid particles enter the simple wave
region by crossing each straight characteristic from right to
left are called forward facing waves. Thus the flows depicted
in Figs. 18(a), (b), are forward facing rarefaction waves
while the flow depicted in Fig. 19 is a forward facing
compression wave. Conversely, if the fluid particles enter
the simple wave region by crossing each straight character-
istic from left to right, the wave is called a backward facing
wave. Hence a backward facing rarefaction wave would
result if gas filled the tube to the left of the piston, which
was then withdrawn towards the right (how could a
backward facing compression wave arise ?).

However, when a general constant magnetic field is
superimposed, the resulting flow becomes a magnetohydro-
dynamic flow involving magnetoacoustic rarefaction waves.
Let us consider the specially simple problem that arises when
the piston is withdrawn in the negative x-direction at a
constant velocity V, while the magnetic field is transverse
to the direction of piston motion in the gas at rest with
density p,. We take the y-axis in the direction of the
magnetic field and the origin of the axes at the initial piston
position.

The general families of C*) characteristics are given by
the equation

Cc®); édi: =0v,+c, (36.2)

in which ¢, is to be identified with one of the roots given in
equations (25.31). As the magnetic field is purely trans-
verse, b, = 0, and it is immediately apparent from these
equations that only the fast wave will propagate with

¢, =(a®+b2)t (36.3)

The wave, which will propagate into the gas filled region to
the right, must be a forward facing rarefaction wave
described by equation (36.2) in which we take the 4 sign
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and set ¢, = ¢, = (a®+b?)* to obtain

d—’t‘ =v,+(a’*+b2) (36.4)

ct:
Now, setting H, = 0 in equations (29.1) to (29.3) and (29.5)
we see, by eliminating dv, between equations (29.1) and
(29.5), that

aH, _dp _
H, P
or, in integral form,
H, = kp, (36.5)

where &, is a constant (cf., Example 12, § 28). Using the
definition of b,, and assuming the polytropic gas law (25.6),
we can now rewrite equation (36.4) for the family of straight
line C(*)-characteristics in the form

dx _ -1, BkIp}?

5 v+ (yAp + e ) . (36.6)
The Riemann invariant relation across this C(*) family of
characteristics is obtained by integrating equation (29.1),
in which we have set ¢, = c¢,. The gas flow thus changes its
properties along the C(~)-characteristics and so, recalling
from equations (25.32) that the + sign of A = v, +¢, is to
be associated with the — signs of the F ¢, terms in equations
(29.1) to (29.3) and (29.5), we see that the Riemann in-
variant across the fast rarefaction wave is

P
ro=v,— j e, (36.7)
pPo P

Since r_ is a constant, equal to its value ry.. in the constant
state in which vy, = 0, it follows that

14
b, = j dp (36.8)
Pu p
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Now, the integrand can be written
9 -
‘;)L =K;p ¥ (1+K 0%}, (36.9)

where K; = (yA)* and K, = (uk}/4nyA) and, for y = 5/3,
can be integrated to give

be=2 (’I%){(l +Kop* (1K 0. (36.10)

2

This equation relates the x-component of velocity v, to
the density p and shows that cavitation will occur behind
the piston (p = 0) should the piston withdrawal velocity V
exceed the critical cavitation velocity T (v,)..y, given by

(Vx)cay =2 (%){1 —(1+K,p})?}. (36.11)
2

When H,/p is large, thus making K, large, (v))cay
becomes
(vx)cav = _2K1(K2Po)*, (36.12)

while when the magnetic field vanishes, corresponding to
the ordinary gas dynamic case (see Example 7, § 37),

(vx)cav = _3K1p3
or,

(V9)cay = —3aq. (36.13)

If, as in § 34, the gradient dx/dt of a straight C(*
characteristic belonging to these fast centred rarefaction
waves is denoted by &, then for y = 5/3 equation (36.6)
becomes

& = v+ K p}(1 + K, pH)t. (36.14)

t The velocity (v,),., at which cavitation occurs is often called the
escape speed.
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By using equation (36.10) in this result we can now obtain
the relation between p and &:
=2 <§1){(1 +K,pH) - (1+ K20+ K p* (1 + K, pP)E
2
(36.15)

Also, using equation (36.10) to eliminate p from equation
(36.6), we find that

v, K, K, {v,K ¥
= 4 (14 K,pd)F — 2132222 L (14 K,pd)?
3 2 K, ( 2P3) K, | 2K, ( 2P3)
(36.16)
while the Ct*)-characteristics are determined by
dx . x ‘
— =¢ with £ ==, 36.17
dt ¢ : t ( )

It should be noticed that due to the assumption of
infinite conductivity in the gas and to the configuration of
the magnetic field it has been unnecessary to specify a
magnetic boundary condition on the piston face. We
mention here that in the general discussion of § 34 it was
assumed that H, # 0, from which then followed the con-
clusion that cavitation cannot occur in fast rarefaction
waves. However, cavitation is possible in the case dis-
cussed in this Section because we have assumed that A, = 0
and so the method of solution used in the discussion of

§ 34 breaks down.

(iii) The generalised piston problem

A generalisation of the previous problem is suggested by
the special properties of magnetohydrodynamic contact
discontinuities. In § 30 we saw that when H, # 0 across a
contact discontinuity, both the velocity and magnetic
vectors must be continuous across the discontinuity.
Consequently, if the fluid on one side of a plane contact
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discontinuity is replaced by a rigid perfectly conducting
plane wall moving with velocity u, the fluid and magnetic
boundary conditions at the interface will be unchanged.
Hence, across a perfectly conducting rigid wall bounding a
perfectly conducting fluid the magnetic vector is continuous
and the fluid in contact with the wall moves with the wall.
Thus, unlike an ordinary hydrodynamic shear flow, the
fluid sticks to the wall. We shall call this the generalised
piston problem.

Take the x-axis normal to the wall and let the y and z-
axes be fixed in the plane of the wall. Then, denoting the
fluid velocity by v, we have the boundary conditions

[B]=0 and v=u,
or
By = By, By, = B,,, Bi;=B,, (36.18q)
and
Uy = Uy, Uy, = Uy, U= U, (36.18b)

where the suffix 1 refers to a layer of material just inside the
wall and the suffix 2 refers to a layer of fluid adjacent to the
wall. Because of equations (36.18a) it is not necessary to
distinguish components of B on either side of the interface.

This result is compatible with the electric boundary
condition (15.2) when applied to two adjacent perfectly
conducting media, the interface of which is penetrated by a
continuous magnetic field vector B. To see this it is only
necessary to observe that the transverse electric field
vanishes on either side of the perfectly conducting boundary
across which B, # 0 and on which v, = u,.

Indeed, the same boundary condition (15.2) provides the
conditions to be satisfied across the interface between the
fluid and a cavitation region that can occur when the
perfectly conducting wall is withdrawn with an arbitrary
velocity u. First consider the situation in which cavitation
just occurs at the wall. The cavitation condition is deter-
mined by p = 0 and, since both the fluid and the wall are
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perfect conductors, on which the transverse electric field
vanishes, it follows from equation (15.2), the continuity of
B, and the fact that ¢ is an arbitrary vector with b = n xt,
that we must have
nx{(u—v)xB} = 0. (36.19)
However, since the case when cavitation occurs
immediately adjacent to the wall is only a limiting case of a
finite cavitation zone, these conditions must also apply to a
finite cavitation zone. The boundary conditions across the
fluid-vacuum interface in the generalised piston problem
are thus seen to be

p=0, (36.20a)
H,(u,—v,)—H,(u,—v,) =0, (36.200)
H,(u,—v,)—H,(u,—v,) =0. (36.20¢)

Motion of a rigid conducting wall with an arbitrary
velocity u in an arbitrarily oriented unperturbed magnetic
field H produces magnetohydrodynamic flows of consider-
able interest and complexity. The complexity arises from
the fact that, unlike the simple piston problem, now slow
waves and Alfvén waves can also propagate, and in general
they will interact with each other. When, for example, the
plane wall recedes from the gas in this more general flow,
it is possible for a more general flow region to occur between
the face of the wall and the simple wave region adjacent to
the constant state, thereby complicating the solution.

Of this more complicated class of problems we shall
only examine the qualitative features of one simple example.
Consider the initial fluid motion that occurs when the wall
is suddenly set in motion with velocity u, = —u,,, while
the unperturbed magnetic field H is normal to the wall and
is directed into the fluid which is initially at rest (i.e.,
H, #0, H, = H,, = 0). As the magnetic lines of force
are frozen in the fluid, which because of boundary conditions
(36.18) moves with the wall, it follows that a layer of fluid
adjacent to the wall is displaced downwards, thereby
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producing a transverse magnetic field component H, in the
positive y-direction. As this component H, is clearly a
decreasing function of the distance x from the wall it
produces a non-uniform transverse magnetic field which
will, in turn, give rise to a currentj in the fluid. If we denote
the unit vectors in the x, y and z-directions by e,, e, and e,,
respectively, then from equation (2.9) we see that
Jj = (c/4n)(0H,[0x)e,. However, H,is a decreasing function
of x and so the field H, produces a current of strength

= (c/4m)| 0H Jox | in the negative z-direction. The effect
on the fluid of the interaction of this current with H, is
then given by equation (6.1) which shows that a force of
strength (u/4n)H, [ 0H,[0x | acts in the positive x-direction.
This force causes a wave to propagate out from the wall.
The final state of this fluid motion is achieved when the
wave has propagated to infinity, for then all the fluid is
again at rest, but this time relative to the wall.

It can be shown that when the ratio of the sound speed
to the Alfvén speed exceeds unity, or when u , is large, an
ordinary gas shock wave (see Chapter 6) advances from the
wall followed by a slow centred rarefaction wave. This
combination of waves is such that the fluid changes from its
initial undisturbed state to its final state of rest relative to
the wall in crossing them. If the ratio of the sound speed
to the Alfvén speed is less than unity then the flow conditions
are resolved in a similar manner but with a magneto-
hydrodynamic switch-on shock wave taking the place of the
ordinary gas shock wave. Large transverse magnetic fields
will be produced by these mechanisms when u, is sufficiently
large. The solution of this type of flow problem is some-
times called the resolution of an initial magnetohydrodynamic
shear flow discontinuity.

(iv) Generation and reflection of Alfvén waves

It is not always necessary that magnetohydrodynamic
wave motion should be initiated by mechanical means, as
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can be seen from the following example. Consider two
horizontal parallel planes a distance d apart between which,
in region 1, lies an incompressible perfectly conducting
fluid of density p,. Assume further that a constant
magnetic field H, is directed normal to these planes, and
that the region 0 above them is a vacuum, while the region 2

A z Vacuum

©

Fic. 21

below them is filled by another incompressible perfectly
conducting fluid of density p,. We shall neglect the effect
of gravity and assume that the positive z-direction is parallel
to H,, being directed upwards, with the origin at the inter-
face between regions 1 and 2 (see Fig. 21). We take H,
in the opposite sense to z. Then, from the discussion of
§ 11, it is easy to see that if a small constant magnetic field
h, in the direction of the unit vector e, parallel to the
x-axis is suddenly created in the vacuum region, an Alfvén
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wave will propagate into region 1 with wavefront speed

2

b, = :t—Ho, thereby dispersing the initial surface current
Py

that was formed. The fluid particles in the Alfvén wave

region will travel along the x-axis with speed

| v1x | = ho(ufdmpy)*

as shown by equatlon (11.7) (see Example 10, § 12). This
Alfvén wave is an example of a magnetohydrodynamic
wave disturbance that has been induced entirely magnetically
without any external mechanical motion being imposed on
the boundary.

It is interesting to examine how the Alfvén wave will be
influenced when it encounters the interface z = 0 between
the fluids of different density, since the situation there will
be essentially similar to the special case studied in (iii) above.
As in other branches of physics, in addition to the incident
wave Wj, there will be a transmitted wave Wy entering
region 2 and a reflected wave Wy returning through region 1.
Since the boundary conditions (36.18) require the continuity
of both the vectors b and v across the interface, the condi-
tions to be satisfied at the interface must be

Uy = v,+vR, h[’ = h1+hR, (36.21)

where the suffixes I, T, R denote the incident, transmitted
and reflected waves, respectively. If the magnitudes of the
vectors h and v are denoted by h and v, then for one-
dimensional flow, equations (36.21) can be re-written in the

scalar form
UT = UI+UR, hT = h,+hR. (36.21’)

Assuming that h, is in the positive x-direction, the
resulting current j in the fluid will flow in the negative
y-direction (cf., the argument of (iii) above in connection
with magnetohydrodynamic shear flow resolution). The
force proportional to pj x H that acts to produce the fluid
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velocity v in the waves W; and Wy will thus act in the
negative x-direction causing the vectors v and h to be
directed in opposite senses. For the reflected wave Wy
propagating in the reverse direction the vector v reverses
its direction and so v and h then have the same sense.

As the fluid velocity v is related to the magnetic vector h
by the relation h = + v(4np/u)?, taking into account the
sense of vectors h and v, equations (36.21") become

vr = vr+0g, vrp3 = vpt—vppt.

These equations may be solved to give the following
relationships between the amplitudes v, and vy of the
transmitted and reflected waves in terms of the amplitude
v; of the incident wave,

3 3
b _ (P_}}J%), or _ (721’%) (36.22)
vy pitpi) U PitP:
The corresponding relationships 1 between hy, hg and A,
follow directly from equations (36.22) and the relation

h = tv(4np/u)*. From the relative senses of the vectors
v and h in the waves W;, Wy and Wy we have

giving

hy  \pt+p3) b pi+p}

In deriving these results we have only considered the
situation immediately after the incident wave reaches the
interface. At a later time the reflected wave will itself
be reflected back from the free surface located at the
vacuum interface at z = d to repeat the process. The

hy _ (Pi‘—/’?) he _ 203 (36.23)

+ Compare this situation with the reflection of waves at a density
discontinuity on an elastic string. See, for example, Coulson, Waves,
1949, § 16.
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general reflection boundary conditions at a free surface
may be derived from these results by setting p, = 0 in
equations (36.22) and (36.23). Similarly, the reflection
boundary conditions at a rigid conducting wall may be
derived by setting p, = oo in these equations.

These results have found application in the astrophysical
problem of the dissipation of energy in the stratified
atmosphere of the chromosphere. However, in this
application the previous results must be slightly modified
to include a gravitational potential and a fluid density that
are dependent on the height z.

§ 37. Examples.

1. Consider the one-dimensional form of the magneto-
hydrodynamic characteristic equations. Show that when
H, # 0 across a contact surface the velocity and magnetic
vectors are continuous across it, but that the density and
entropy can experience finite jumps dp and dS which are
related by the expression

—1(0op
dp = —L(%)gs.
= (as)

Show also that when H, = 0, a shear flow can take place
across the contact surface in which both the tangential
velocity vector and the tangential magnetic vector can
experience finite discontinuities in crossing the contact
surface.

2. Assume the four one-dimensional characteristic
equations determining magnetoacoustic simple waves and

define « and B by the relations o« = c2/a® and f = a?/b2.

Show that
ap =(L)(a2ﬁ-—l)

da 2—y/) a?(a—1)

Determine the fast and slow wave regions in the (a, §)-plane
and deduce the curve on which the maxima and minima of

B lie.
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3. Derive the expression for the generalised magneto-
acoustic Riemann invariants:

Ky=B|oag—1|"+y* Ja az? ey —1|""*day,
%
and show also that
dv, = gy~ 'aad p0HIMgR,
By using the equation
Hy = (a—1)(B~a™HH],
show that we may write H /H, in the form

Hy _ son (H_) \/(ai —1>(aiﬂ—1),
H,

where H, is the value of H, in the constant state adjacent
to the s1mp1e wave region (H is constant and we assume
yO # 0)
Use the fact that H, only vanishes on the line «f = 1 in
order to show that H, ‘does not change its sign across slow
and fast waves, and hence that

H Hy,
s =2 | =sgn = sgn H,).
gn(Hx) & (H) gn (Fhoff)

Then, using the expression for dv,, prove that

o -1
dv, = Fey lgp~t1+dm E‘i——-s n (H,,H,)dp.
y = Fey ap (@ f—1) gn (H,oH,)dp

4, By setting p = a*/c? and r = bZ/c?, and by using the

equation
H? =(a—1)(B—a"HH2

‘()
dp \2-y)Lp (-1 ]

show that
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Sketch the intégral curves of this equation and show that
the points (0, 0) and (1, 1) in the (p, r)-plane are nodes of
the equation. Deduce the fast and slow wave regions in the
(p, r)-plane. The point (1, 0) is also a singularity of the
equation and is called a saddle point. Show that in the
neighbourhood of this saddle point the integral curves
behave locally like rectangular hyperbolae. Notice that at
nodes, the exponents A; of the localised solution have
identical signs, whereas at the saddle point the signs differ.

5. Prove that the wave investigated in Example 12 of
§ 28 must be a fast wave. Show, by considering the
definition of the slow wave speed ¢, in terms of g, b and b,,
that the slow wave has zero velocity. By combining the
characteristic equation corresponding to the final equation
of Example 12 of § 28 with the characteristic equation

Fe,dp+pdv, =0,

which is derived from the continuity equation, show that
2
dv, = + 0= (yA+ Bk p<2—y))* dp
-— 4n b

where the square of the sound speed a*> = y4p?’~!. Hence
prove that the generalised x-Riemann invariants r, for the
velocity v, are

, 2 4
ry =u.+ J (20—3) (‘)’A-l- ’ﬁ t(Z—V)) dt.
0 4z

Notice that the factor k, provides a measure of the
influence of the magnetic effects on the flow and that when
k, = 0 the generalised Riemann invariants reduce to the
ordinary gas dynamic invariants (cf. Example 6, § 28).

6. Prove that when ¢ = 1, v, varies in the same sense
as p, p and B, while when ¢ = —1, v, varies in the opposite
sense to p, p and f. Prove also that, when ¢ sgn (H,H,,)>0,
v, and p, vary in the opposite sense, while when
e sgn (H.H,)<0, v, and p,, vary in the same sense.
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7. Prove that in an ordinary gas rarefaction wave
produced by suddenly withdrawing a plane piston from a
tube filled with gas at rest, the Riemann invariant across the
forward facing centred rarefaction wave that results is

where a, is the velocity of sound in the constant state. By
setting dx/dt = &(= x/t), prove that

b, = (y—+—21> (E—ao)

and that the cavitation velocity is
—200
p—1°

Deduce the regions in the (x, 7)-plane that are occupied
by the constant state region, the simple wave region and the
cavitation zone (if the piston withdrawal velocity is
sufficiently fast) and sketch the behaviour of the C(™)
characteristics.

8. Consider a fast centred rarefaction wave in which the
magnetic field H is very strong and is purely transverse to
the direction of flow. Using the fact that H, = k,p and
assuming the gas pressure law p = Ap#% prove that the
C™) family of characteristics is determined by the equation

dx e
— =v,+K,/K,p,
i 1\/ 2P

(vx)cav =

where K, = (54/3)* and K, = (3uk?/20nd). Setting
dx|dt = & show that

1 ¢ 2
= | — +2 4
g 9<K1K% § )

Ux = 5‘(5—K1\/K2Po)~
Deduce the escape velocity of the gas.

and that



CHAPTER VI

MAGNETOHYDRODYNAMIC SHOCK WAVES

§ 38. General considerations. In our discussion of
simple waves in a perfect gas we have already seen that
under certain conditions the wave profiles of the dependent
variables (density, pressure, etc.) can steepen, until at a
certain time they develop an infinite gradient. In Fig. 20
this process is suggested by the waveform at time ¢ = ¢,.
The change in the nature of the solution beyond this time
has already been indicated in principle by the arguments
used in connection with Fig. 19. These demonstrated that
the solution was not unique at time 7., and we show later
that it is sufficient that this non-uniqueness should take the
form of an ordinary jump discontinuity in the dependent
variables when crossing the wavefront. A wave of this type,
in which the dependent variables experience finite jumps
across the wavefront, is called a shock wave. From
definition (13.1) it can be seen that shock waves are strong
discontinuities, whereas the wavefronts of Chapters IV and V
that are described by characteristics are weak discontinuities.

This situation is obviously a mathematical idealisation
of a physical process involving real gases with dissipative
effects, in which large changes in the physical variables
occur within a very thin region of the flow. Experimental
results show that the thickness of a shock wave in a real gas
is of the order of a few mean free paths, so a mathematical
idealisation of a shock wave in which the dependent
variables experience a finite jump across a geometrical

195
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surface represents a good approximation to reality. We
shall neglect the dissipative effects of viscosity and electrical
resistivity that must be included if the actual shock structure
is to be studied and again use the approximation provided
by the Lundquist equations.

In order to determine the relationship between the
dependent variables on adjacent sides of a magnetohydro-
dynamic shock we shall first use the fact that the Lundquist
equations can be decomposed into a simple system of
equations, each having the form of a conservation law.
Indeed, equation (6.5) already has this form since it
expresses the conservation of mass. Then, by integrating
these equations over a volume moving with the shock and
using a theorem which we shall now prove, the Gauss
divergence theorem can be applied to the result to determine
the jump conditions across the shock.

However, before establishing an important rate of
change theorem for a volume integral, in which the bounding
surface is moving, let us first recall that the general
differential form of a conservation law is

%‘tl +divF =G. (38.0)

By integrating this equation over a volume element dV and
using the definition of the divergence operator t it is easy
to interpret this equation physically. We find that the sum
of the rate of change of the amount of a scalar U contained
in a volume element dV and the flux of the vector F into
dV, together equal the contribution from the source dis-
tribution G throughout dV in a unit time. As we have
already remarked, we shall have occasion to identify the
Cartesian components of the Lundquist equations with laws
of this form.

Let us now prove a general theorem that is vital to the

+ See Rutherford, Vector Methods, 1954, § 51.
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study of shock waves. We have seen that in a shock wave
we must consider the possibility of discontinuities across a
moving surface, which we now call the shock front. So, to
do this, we start by considering an arbitrary surface S(z)
moving with velocity ¢, that bounds a volume V(f) in which
a differentiable scalar function U is defined.

Write

I= j Uav, (38.2)
|4

and notice that in time increment 67, the integrand of 7
becomes, to the first order,

oU
U+ (—)at

However, during the time increment §¢ the volume bounded
by S(¥) changes as V(f) moves. To calculate the effect of
this change we use the fact that the vector surface element
dS of S(t) moves a distance qd¢ in the time increment ¢,
and so the corresponding element of volume change is
q.dS6t. The corresponding increment in the integrand of /
due to this is thus Uq.dS5t. So, combining these results, we
find that
ou

I+6I = J‘ {U+ <——> (5t} av+ f Uq.dSét. (38.3)
20 ot NO)

Subtracting equation (38.2) from this result, dividing by §¢
and taking the limit as 6r—0 we have finally proved the
following volume rate of change theorem,

D yav= f U 4y + f Uq.dS. (38.4)
Dt Jyq v Ot s()

This important theorem is just the three-dimensional
statement of a familiar theorem concerning differentiation
under the integral sign 1 (see Example 1, § 44). By applying

+ See G illespie, Integration, 1947, § 41.
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the Gauss divergence theorem to equation (38.4) we can
express it in the alternative form

D au .
= var= j (- +d1v(Uq)> dv. (38.5)
Dt V() V() at

Let us now see how this theorem may be used to derive
the jump conditions that are permitted by a conservation
law of the form (38.1). We assume that a discontinuity
surface exists and that an arbitrary part of it, S*(), divides
the volume FV(f) into volumes V() and V,(¢), and the
surface S(r) into surfaces S,(f) and S,(¢), respectively. The
value of functions on adjacent sides of, and arbitrarily
close to, S*(#) will be denoted by the suffixes 0, 1 according
as S*({) is approached from V,(¢) or V,(¢), respectively.

Using the expression for dU/dt given by equation (38.1)
in theorem (38.5), applying the Gauss divergence theorem,
and assuming first that neither U nor G have any singularities
we find that

DU var=| (ug-p).as+ f GdV. (38.6)
Dt)y s v

So, subtracting from this equation the corresponding
equations in which V() is identified, respectively, with
Vo(?) and V,(r), we find that

f (Uq—F),.dSg+ j (Uq—F),.dS¥=0, (38.7)
S*(t) S¥(1)

where dS}* is the outward directed vector surface element of
S*(¢) with respect to V(). However, since

dS¥ = —dS} = ndS*,

say, where n is the outward drawn normal to S*(7) with
respect to V,(?) and, furthermore, S*(7) is an arbitrary part
of a discontinuity surface, it follows at once from equation
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(38.7) that
(Uq—F)o.n—(Uq—F);.n =0. (38.8)

If [ X] denotes the jump X; — X, in the quantity X across
S*(?), then equation (38.8) may be written in the alternative

form B
[AU-F.n] =0, (38.9)
where
i=gq.n (38.10)

is the normal speed of propagation of the discontinuity
surface.

A special case of interest to us occurs when the source
term G of equation (38.1) is a divergence div g of some
vector g, which is also discontinuous across S*(7). The
volume integral in the last term of equation (38.6) can then
also be transformed by the Gauss divergence theorem into a
surface integral when the same argument as before then
yields the jump equation

[lU-F.n]+[g.n] = 0. (38.11)

Equation (38.11) is the compatibility condition to be
satisfied by jumps in the terms U, F and G of the con-
servation law (38.1) across each element of area of a general
curved discontinuity surface moving with local normal
velocity 1 = q.n. When, as we shall do later, we consider
plane discontinuity surfaces (plane shocks), a single jump
condition of the form (38.11) will be uniformly valid over
the entire discontinuity surface for each conservation
equation involved.

§ 39. Magnetohydrodynamic shocks. In order that we
may utilise the results of the previous section to determine
the jump relations that are permitted in magnetohydro-
dynamic shocks it is necessary that the Lundquist equations
be displayed in conservation form. Equation (6.5) is already
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in conservation form
%’; +div (pv) = 0. (6.5)

To reduce the momentum equation (7.5) to conservation
form we first transform it to its equivalent form (10.18),
and then use the solenoidal property of H expressed in
equation (2.3), together with the mass conservation law
(6.5) above, to write it in the component form

2
A8 1 div (o) = - i(p+ ’ﬂ) + £ div (HLH),
T

ox 8n
(39.1a)
6(pv,,) +div (pv,) = — a-a—(P-l- ﬂg ) + 4ﬂ div (H,H),
y /1
(39.1b)

a(gv,) +div (po,8) = — ai<p+ %) + 4ﬁ div (H.H).
us (4
(39.1¢)

Using the solenoidal condition (2.3) and expanding the
right-hand side of the equation (5.1°) for the magnetic field
enables it to be written in the component form

‘Z% +div (H,) = div (o, H), (39.24)
OH, | div(H,0) = div (o, H), (39.2b)
‘%f—z +div (H,v) = div (o,H). (39.2¢)

The energy conservation equation (8.6), from which the
entropy equation (8.2) was derived, is also in the required
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form and for a fluid with no dissipative effects reduces to

2 2
9 %pvz+pe+’ﬂ +div{v| 1pv® + pe+ HH
ot 8n 8n

2
— —div (pv+ ‘—‘g p— KO- H) H). (39.3)

n 4n

If, now, we apply result (38.11) to these equations we
find the following jump conditions:

mass conservation
[Zp—pv.n] = 0, (39.9)
momentum conservation

[Apv—pv(v.n)] = [p+ lﬂz:l n— £ [(H.mH], (39.5)
87 4z

magnetic field
[AH—(v.n)H] = —[(H.n)v], (39.6)

energy conservation

[l(}pvz+pe+ u8£n2> (ipv +pe+ il )(v n)]
[p(v w+ 2 H ( py— K- H)(H n)] (39.7)

solenoidal jump condition
[H.n]=0. (39.8)

It is useful to display these results in a different form by
expressing them in terms of

i, = v.n—-1, (39.9)
the normal fluid velocity component relative to the normal
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velocity 1 of the discontinuity surface. Alternatively
expressed, the jump conditions become:

mass conservation

[p3,] =0, (39.4)
momentum conservation ]
[pt,0+p*n] = 4ﬁ [H,H], (39.5)
n
magnetic field
[3,H—H,w] =0, (39.6")

energy conservation
2
¥, | 3pv*+pe+ HH +v,p*— . H) H,|=0(39.7)
8n 4n

solenoidal jump condition
[H#,] =0, (39.8)
2

where p* =p+ l—lg—H— is the total pressure and the suffix n
n

again denotes the normal component.

Equation (39.4") expresses the simple fact that the mass
flow through the discontinuity surface is constant. We shall
denote the mass flow through the surface by m, and thus

m = polno = P10y, (39.10)

where the suffixes 0 and 1 denote opposite sides of the dis-
continuity surface. A discontinuity surface will only be
called a shock when the mass flow m through the surface is
non-zero. Hence fluid particles must cross a shock front.

As may be expected from the study of boundary condi-
tions in Chapter II, the solenoidal jump condition (39.8)
shows that H, is continuous across a shock front. We shall
later use this fact, together with (39.10), to remove H,
and m from within the square brackets of the jump
conditions.

The jump conditions (39.4°) to (39.8’) have been derived
quite generally for an element of an arbitrary shock front
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moving with local normal velocity 1 = gq.n. Henceforth
we shall assume that the shock propagation is steady and
that the shock front (discontinuity surface) is plane, so that
these jump conditions become uniformly true across the
entire shock front for all time. The constant value that we
attribute to 1 will determine how the shock moves relative
to our reference frame. If, for example, we set 1 =0
the shock will be stationary, whereas if we set 1 = —7,,
then v,, = 0 and the shock will propagate with speed ¥,
into the gas of region 0 which is at rest.

§ 40. The generalised Hugoniot condition. Let us display
the energy equation (39.7°) in a form which has special
significance in ordinary fluid dynamics. To do this we first
write it in the form

tm[v*] 4 mle]+ 25 [T+ [np] + [ [0H’]

Hery H] =0, (40.1)
4z

where T = 1/p is the specific volume of the fluid. However,
from the thermodynamical considerations of § 8, we have
already seen that R = ¢,—c, and the adiabatic exponent
y = ¢,[c,, while for a polytropic gas e = ¢,T, and so
equation (8.8) becomes

e= " (40.2)
y— 1

The energy equation (40.1) thus becomes

3m[v?] + [pt] + m,u [‘z:Hz] +[v.p] + [v H?]

(40.3)
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The first term of this equation can now be replaced by the
expression that is obtained by forming the scalar product of
equation (39.5") with <), where Q) = }(Qo+ Q1)
denotes the average value of Q. The transformed equation
obtained from (40.3) is

y__'fl [pe]+[eap]—[P1<0nd + ’;L: [<H?]+ ﬁ [o,H?]

_ uH, _trp HH, - )
= [v.H] o [H* Koy + " [H].<{v) =0.(40.4)

Now, since the speed 1 of the discontinuity surface must
obviously be continuous across the discontinuity surface, it
follows at once from equation (39.9) that

[8.] = [va] (40.5)

m[t] = [v,]. (40.6)

So, applying the identity [PQ] = <(P)[Q]+{Q@)[P]to the
second and third terms of equation (40.4), using equation
(40.6) and re-writing the remaining terms containing the
magnetic field vector we find that

or, alternatively, that

_m mu 27, H 2
= [+ mcpy[]+ T2 [eH]+ =[]

_ bk, _ Frge KA, =
- [v.H] . [H* vy + " [H].<{v) =0.(40.7)

Expanding terms of the form [PQ] in equation (40.7)
and using the identity {(P*) —(P)? = }[P]* together with
the result

m{e)[H].CHY+m[<]<H)* = H,[v].<H), (40.8)
obtained by forming the scalar product of equation (39.6")
with (H), we find that, provided m # 0, equation (40.7)
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simplifies to
1 M 2
—_ + —[z][H]* =0. 40.9
L [P+ o (L] @2)
When this expression is re-written in the form
[e+<p)t] = — %t [<][H, (40.10)

the left-hand side of the equation is seen to be the Hugoniot
relation of ordinary gas dynamics.t For this reason
equation (14.10) will be called the generalised Hugoniot
relation. When H = 0 this equation only involves thermo-
dynamical quantities and reduces to the results of ordinary
gas dynamics.

However, when H # 0 but is normal to the plane of the
shock the conducting fluid behaves as an ordinary fluid for
then, as H = H,n and we have seen that H, is continuous
across the shock front, we must have [H] = 0.

By introducing the ratio r = 74/%,(= p,/p,) equation
(40.9) can be used to express the pressure ratio p,/p, across
the shock front in the form

po @+D=-@-Dr 8mp, (y+D—-(—Dr

This important equation illustrates an ambiguity in the
results obtained so far; namely, that the pressure ratio
D1/Po depends on the density ratio r across the shock, which
so far may be either less than or greater than unity.
Obviously in any physical situation the direction of the
pressure and density jump across the shock front is uniquely
determined, and so we must next examine how the
physically permissible range of r may be determined.

That the mathematical solution obtained from the
Lundquist equations has this non-uniqueness should be of

+ See Rutherford, Fluid Dynamics, 1949, § 46.
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no surprise to us since we already encountered a similar
non-uniqueness in § 34 in connection with Fig. 19. In the
next section we shall show how this non-uniqueness may
be resolved by using thermodynamical considerations.

§ 41. The compressive nature of magnetohydrodynamic
shocks. We have just seen that the jump conditions (39.4")
to (39.8") which relate values on adjacent sides of a dis-
continuity surface do not determine the senses of the
jumps involved (i.e., the increase or decrease). Since in a
physical situation a solution must be unique, it is clear that
some extra condition must be imposed on the jump condi-
tions so that only physically real jump conditions are
allowed. To achieve this it will be necessary to supplement
the jump conditions by the thermodynamical requirement
that the entropy cannot decrease across a shock front. It
should be clearly understood that this supplementary
condition is imposed from outside the framework of
magnetohydrodynamics, and that it is in fact implied by
the second law of thermodynamics.

First, let us choose the direction of the normal n to the
shock front so that

5, =v,—4 >0, 41.1)

and denote quantities on the side of the shock front into
which n is directed by the suffix 1 and quantities on the
other side by the suffix 0. Fluid particles will thus leave
region 0 and cross the shock front to enter into region 1.
It is conventional to refer to the side of the shock front
through which the fluid enters as the front of the shock or
the side ahead of the shock. The other side is called the
back of the shock or the side behind the shock.

We shall now prove that when used with the jump
conditions, the second law of thermodynamics, which
requires the entropy not to decrease on crossing the shock,
so that

S, 2 So, (41.2)
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also implies that p, > Po and p, >p,. Thatis the second law
of thermodynamlcs imposes the requirement that only
compressive shocks are allowed.

Let us start by noticing that equations (8.11) and (8.12)
imply that,

S,—S, =c, log (”1‘1> (41.3)
Potd

or, alternatively, that

S;i—8So =¢,log (ﬂ) —vc, log r, (41.4)
Do

where, again r = 1o/t,. Now by setting k? = u[H]?/8np,,
which is always a non-negative number, we may express
equation (40.11) in the form

pi _ A+EH{+Dr—@-1)}-2K"r a1.5)

b

Po (+D)—-@-=Dr
showing that
PR v oy S

Because the pressure ratio is inherently positive, the
numerator and denominator of inequality (41.6) must both
be of the same sign, while the fact that y>1 shows that

Uik Pkt 41.7)
y+1 y—1

We must now show that the entropy condition (41.2) dis-
allows density ratios r less than unity.

Since k? = 0, we shall prove our proposition if we
succeed in showing that when p,/p, in equation (41.4) is
replaced by {(y+ 1)r —(y--1)}/{(y + 1) —(y — L)r}, the entropy
condition implies that r>1.
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So we shall now consider the expression

—Sy = (+Dr=@-D{ _
S-S, cvlog{(y+1)—(y—1)r} ye, logr. (41.8)

Assuming the state 0 ahead of the shock to be a fixed state
we can write r = r(S,) and it is easily established that

ds; _ )@= 1(r—1)°

dr r{y+Dr—=(-HHE+D-@-1r}
Now the numerator is positive, and we have already seen
from the arguments leading to the inequalities (41.7) that

both factors in brackets in the denominator have the same
sign, and so

(41.9)

ds,
dr

Consequently, since from condition (41.2) the entropy
cannot decrease across the shock, while condition (41.10)
shows that S; and r change in the same sense, we have
proved that r(S,) increases across a magnetohydrodynamic
shock. As r(S,) = 1 we have thus also proved that r>1
and hence that magnetohydrodynamic shocks are com-
pressive. Equation (40.11) then shows that p,/p,> 1 across
the shock front as was asserted at the start. Inequality
(41.7) must now be modified to

>0. (41.10)

1<r< VL (41.11)

y—1
The mass conservation jump condition (39.4’) shows that
By = rby, 41.12)

and so, relative to the shock front, the gas ahead of the
shock moves faster than the gas behind the shock. Let us
now introduce the notions of Mach number and subsonic
and supersonic flow. The local Mach number M = v/a of
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an ordinary gas flow is defined to be the ratio of the local
gas speed v and the local speed of sound a. In a general
flow the Mach number will obviously be a function of
position, while in the steady flow across a shock such as we
are considering here it will have different constant values
on opposite sides of the shock front. A flow will be said
to be subsonic when its Mach number M <1 and it will be
said to be supersonic when its Mach number M >1.

When the shock is stationary (1 = 0) and the magnetic
field acts normal to the shock front, result (41.12) can be
shown to be equivalent to the statement that the flow ahead
of an ordinary stationary gas dynamic shock is supersonic
and the flow behind the shock is subsonic 1 (see Example 5,
§ 44).

We can prove a analogous result for a stationary
perpendicular magnetohydrodynamic shock in which the
magnetic field acts normal to the direction of flow. The
result will be derived by a modification of the argument that
was used to derive the Huzoniot relation. To simplify our
notation let us identify the normal n with the direction of
the x-axis so that H, = 0 and v, = v, = | v|. We shall
denote the transverse magnetic field strength by H,.
Equations (39.4’) and (39.7) then become

£r - B0 (41.13)
Po Uyt
2 2
Povio+ Po+ Ko =p03 +p,+ ”H‘l, (41.14)
8n 8n
o _ Hu (41.15)
vxl HtO

2
'}”xo’*' )’Po‘fo ﬂHtoTo <}v 4+ YP1T ')’Pl"—'l + ﬂHuTl . (41.16)
1 4rn -1 4

T See Rutherford, Fluid Dynamtcs, 1959, § 46.
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Equations (41.13) and (41.15) immediately show that
P1r_To - Hu _ e (41.17)

thereby enabling equations (41.14) and (41.16) to be written
in the form

M3(1— 1) - 1{<’ﬁ —1> HHy (2 1)}(41.18)
r/ v (\po 87mpo
and

M3 1—1>="H'2°('_1)+ 2 1L(e) Zil a9
r’ 2mppe y=1lr\po/ J

when the relation a3 = yp,t, is used. Since the shocks
must be compressive, and so r>1, the elimination of the
ratio p,/p, between these equations t leads to the quadratic
equation

@- y)"H'°:2+v{ 1Hio +%(v—1)M3+1}r
877, 8770

3+ 1DM2 =0. (41.20)
Consequently, since r>1, equation (41.20) yields the
inequality
b+ DM > BT +v{”H’° - 1)M0+1}
87po 8np

provided that y <2 (y = 5/3 for a plasma). Or, more simply,
the inequality

vi>bk+al, 41.21)

where b,,, the Alfvén speed ahead of the shock, is given by
2

p2 = Mo (41.22)
4npo

1 The elimination of M; would lead directly to the alternative

{‘c‘)orml)of the generalised Hugoniot relation expressed in equation
11).
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Since the Alfvén speed is a more proper speed by which
to classify magnetohydrodynamic disturbances, we define
the Alfvén number 4, by analogy with the Mach number, to
be the ratio of the fluid speed v to the Alfvén speed b giving

A=2 (41.23
b
Inequality (41.21) then shows that
a 2
A3>1+ (-9) : (41.24)
byo

and so the flow ahead of a perpendicular magnetohydro-
dynamic shock is super-Alfvénic relative to the conditions
ahead of the shock front. A similar argument establishes
that the flow behind the shock front is sub-Alfvénic relative
to the conditions behind the shock front. The ratio
v,/(b? +a?)? is often called the magnetic Mach number.

The situation appropriate to a moving plane shock wave
may be easily deduced from the jump conditions (39.4") to
(39.8") by setting 4 = U, where U is the constant shock
velocity. Alternatively the result may be deduced directly
from the above equations by super-imposing a constant
velocity —U on the system, with U directed along the
x-axis.

§ 42. Magnetohydrodynamic shock wave classification.
We have already seen that under certain conditions a
continuous wave motion can tend to a shock wave. This
fact, coupled with the identification of the different types of
continuous wave motions which we have called fast and
slow waves, transverse waves and entropy waves, suggests
that an analogous classification for shock waves might
exist. This is indeed the case, and to establish such a
classification for magnetohydrodynamic shock waves we
first use equations (39.8") and (39.10) to write the jump
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relation (39.5’) in the form

m[v]+ [[”% [+ 2 o> [HIn— 222 ] = 0. (2.

Then, using the scalar equation
m[t]—-[v,] =0, (40.6)

that was derived from the continuity of the shock front
velocity 4, the jump relation (39.6") becomes

H,[v]—<H)[v,]—-m{t)[H] = 0. 42.2)

The two vector equations (42.1,2) and the scalar
equation (40.6) then represent a set of seven homogeneous
scalar equations for seven scalar jump quantities; namely,
the six scalar components of [v] and [H] and the scalar
quantity [7].

For these equations to be consistent, and for a non-
trivial solution to exist, the determinant of the coefficients
of these jump quantities must vanish. It is a straight-
forward matter (see Example 7, § 44) to show that the
vanishing of this determinant yields the equation

>m {<r>m2— %}{<r>m4+(<r>[t]“[p]—/t(H)’)m’
11 AHEL
[1:] [p] 47:} 0. (42.3)

This may be regarded either as an equation for the mass
flux m through the shock front, or as an equation for the
shock velocity. Indeed, by writing equation (41.1) in the
form mt = v, —/, and averaging across the shock front we

find that
= (v, —m{z). (42.4)

The vanishing of the different factors of equation (42.3)
thus corresponds to different modes of magnetohydro-
dynamic shock wave propagation.
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(a) Fast and slow shocks
Let us consider the vanishing of the last factor of
equation (42.3). The factor

Eomt+ (@[] [ - eHym? =[] [£] A =0

can be written as

(m?+[]” 1[p])(m — ¢yt HA )

- 1"2“_:’2'_1 (HY'—HY).  (42.5)
T

This is a quadratic equation in m? and will thus have
two roots, the smaller of which we shall denote by m2 and
the larger by m}. As the right-hand side of the equation
is positive it follows directly that each factor on the left-hand
side must be of the same sign, giving

m? < —[7]"'[p] £ m}, (42.6)

m? < pH2(4n(7y) < m?. (42.7)

We notice that the thermodynamical considerations of
§ 41 which proved that [p]>0 across a shock wave also
proved that [7]<0, and so the middle term in inequality
(42.6) is positive, as is the middle term of inequality (42.7).
The roots m, and m; of equation (42.5) describe the mass
flow (or the shock velocity) of fast and slow magneto-
hydrodynamic shock waves. The inequalities (42.6,7)
provide the justification for these names.

Using equation (42.5) and the jump relations (39.4°) to
(39.8"), the permissible jumps of quantities across magneto-
hydrodynamic fast and slow shocks are seen to be

[H] = &7, m*((H)—H,n), (42.8)

and
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[v] = ¢, m (”H" CHY—(tym n>, 42.9)

[<] = —¢;, s((t)m #:;It ) (42.10)

where ¢, ; is a parameter characterising the strength of the
jump across a fast (f) or a slow (s) shock.
Now, as [H*] = 2{H).[H], it follows from (42.8) that

[H]? = 2¢,, ;m*( HY*—H)), (42.11)

and so, taking the scalar product of equation (39.5") with n
and using this result yields,

[p] =¢/,m (<r>m £ <4H 2 ) (42.12)

Finally, eliminating ¢, , between equations (42.10) and
(42.11), we find that

[B7] = —2m?[{J{CHD?— 1) /{(Omz— “Tff} “2.13)

Since [t]<0 across a shock wave, this equation and
inequality (42.7) together imply that the magnetic field
strength increases across a fast shock and decreases across
a slow shock. As would have been expected from jump
condition (39.8"), equation (42.8) shows that the magnetic
field experiences a tangential jump discontinuity on crossing
the shock front.

Expanding equation (42.8) shows that

1+3e, m?
H, = (%) H,,
1—3¢, ;m

where the suffix ¢ denotes the transverse component.
Consequently

() - ] - ()

1—4e, m



§42 SHOCK WAVES 215

showing that the jump [H]is parallel to H,,, while equation
(42.8) itself shows that the sense of the jump is the same as
that of the tangential component of (H). These results,
together with the fact that it can be shown from shock
stability considerations T that the magnetic field cannot
reverse its direction, thus allow us to make the following
statement. The tangential component of the magnetic
field retains its direction across fast and slow shocks,
increasing its magnitude across a fast shock and decreasing
its magnitude across a slow shock.

Analogous to switch-on and switch-off simple waves we
can also have switch-on and switch-off shocks. The passage
of a switch-on shock results in the appearance of a magnetic
field when one was previously absent ahead of the shock,
and conversely for a switch-off shock. It is apparent from
our discussion of the behaviour of [H] that a switch-on
shock must be a fast shock and a switch-off shock must be
a slow shock.

As in the case of ordinary gas dynamics, a fast or slow
magnetohydrodynamic shock is uniquely determined by
prescribing all the quantities ahead of it and the normal
relative gas velocity #,, = v,,— A4 or the pressure p,(>p,)
behind it.

(b) Transverse shocks
The vanishing of the second factor of equation (42.3)

gives the result
2 \4
m=t+ (‘-‘”—2%) . (42.14)
{1

Disturbances of this type are called transverse shock waves
and it follows directly from the jump equations (39.4") to

t Although it is mathematically possible for the magnetic field to
reverse its direction across a slow shock, it can be shown that such a
slow shock wave would be unstable to perturbations of the initial
conditions, and so it represents a non-physical shock.
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(39.8) and equation (42.14) that in transverse shock waves

[H] = em(H) xn, (42.15)
[»]= g Holn LH, (H) xn, (42.16)
[c] =0, (42.17)
[p] =0. (42.18)

Hence the jumps [ H] and [v] are parallel to one another
and lie in the plane of the transverse shock, while the
pressure and density remain constant across it. Combining
equations (42.15) and (42.16) and using the fact that the
density remains constant yields the relation

[s] = +[H] \/;_ﬁ; @2.19)

which exhibits the same relationship between v and H as
does equation (11.7) which was obtained in our preliminary
discussion of Alfvén waves.

Equation (42.15) implies that

[H?] = 2(H).[H] = 0, (42.20)

and so the strength of the magnetic field is unchanged
across a transverse shock; the magnetic field simply rotates
on crossing the plane of the shock.

Equations (42.17) and (42.18) together with equation
(41.3) show that

[S]=0. (42.21)

There is no classical hydrodynamical discontinuity that
corresponds to this type of wave since, when m # 0 in
ordinary hydrodynamical flows, it follows from the con-
tinuity of the pressure that every other quantity must be
continuous.
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(c) Contact discontinuities
The vanishing of the only remaining factor in equation
(42.3), namely
m =0, (42.22)

gives rise to a contact discontinuity which, by its definition
in terms of equation (42.22), has no flow across the dis-
continuity surface.

It follows directly from the jump relations (39.4°) to
(39.8) that when H, # 0,

[H] =0, (42.23)
[v] =0, (42.24)
[r] =0, (42.25)

while [7] may be arbitrary. Since no fluid crosses a contact
discontinuity this last result does not violate the thermo-
dynamical requirements that must be satisfied by shocks
and it is, in fact, an ordinary hydrodynamical type of
contact discontinuity.

However, when H, = 0, the same reasoning then shows
that

[p*] = [p+ —8’1;-2} =0, (42.26)

while the tangential components of the jumps [H] and [v]
may be arbitrary.

(d) Weak shocks

It is easy to show that as the strong discontinuities in
H, v, v and p tend to weak discontinuities, and so [H], [v],
[7] and [p] tend to zero, so equation (42.3) for strong
discontinuities tends, apart from a factor, to the character-
istic equation (25.30) for weak discontinuities. To achieve
this result we use the fact that although H, v, t = 1/p and p
are continuous across the discontinuity surface, their first
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derivatives are discontinuous. Consequently we must make
the following changes of notation to obtain our result:

[v]—50, [‘c]—»—/—)l—i&p, [H]-6H
and

mosFpe, <ok =Lt myom,
P I
where & denotes the jump in the normal derivative of the
quantity associated with it on crossing the wavefront. This
result also implies the important result that shock waves
and weak discontinuities propagate at different speeds.
Since for a weak shock the density ratio can be written

r=1+eg,

where ¢ is small and positive, it follows directly from
equation (41.9) that

S
—L e, y(y*—1)e%.

de
Consequently, integrating, we find that
S1=So = Tzc,y(¥* = 1)e’,

showing that the entropy change S, —S, across a weak
shock is of third order with respect to the change in r. As
equation (41.8) was itself chosen to provide an upper bound
to the entropy increase across a shock, irrespective of the
magnetic field, it also follows that the entropy increase
across a shock is not greater than third order with respect
to the change in H.

§ 43. Magnetohydrodynamic shock stability. It is im-
portant to understand that so far no consideration has
been given to the stability of the magnetohydrodynamic
shocks that have been discussed. By this we mean that
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although these shocks are mathematically possible, it still
needs to be shown that they are stable with respect to
perturbations of the initial conditions, and so are also
physically realisable.

This stability criterion is suggested by the work of
Hadamard who, at the turn of the century in connection
with studies of wave motion, suggested that in the physical
world all real solutions depend continuously and boundedly
on initial data. Consequently, if a mathematically possible
solution is found to be unstable with respect to perturbations
of the initial data, then it cannot represent a physical
solution. Indeed, if such a wave could be initiated, the
first irregularity of flow velocity or density that the wave
encountered would cause it to break up into a combination
of stable waves.

Although we shall not pursue these ideas further, it is
nevertheless possible to apply them to magnetohydro-
dynamic shocks in order to determine under exactly what
conditions our shock solutions represent physically realisable
shocks. Arguments of this type show, for example, that
the tangential component of the magnetic field cannot
reverse its direction when crossing a slow shock. Also,
that unlike classical hydrodynamics, a magnetohydro-
dynamic shear flow discontinuity is stable provided the
magnetic fields in the fluids adjacent to the discontinuity
have no normal component at the interface. In this latter
case the magnetic field actually exerts a stabilising effect on
the flow. A physical reason for this is that when H, = 0,
perturbations of the interface distort the fluid and stretch
the magnetic lines of force which, as we saw in § 11, behave
iike elastic strings and so help to reduce the perturbation.
This effect is absent from a classical hydrodynamic shear
flow which is consequently unstable and rapidly degenerates
into turbulent flow.

Further discussion of this topic will not be possible here
but perhaps something of the importance of such an analysis
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can be appreciated from the brief comments that have been
offered.

§ 44. Examples

1. Show that the one-dimensional form of the vector
rate of change theorem

D UdV=J i‘-’dmj Uq.dS
Dt Jyy v Ot s

for a scalar function U = U(x, ?), where q is the velocity of
the surface S(¢) bounding volume V(?), is

8(1) B(2)

N U, dx = J 9 g+, 0% —u@, n%,
dat Jun ary Ot dt dt

where o and B are functions of the single real variable ¢.
Now assume that a plane shock wave in an ordinary gas
occurs at a point x = &(¢) in a tube of gas of arbitrary
length whose ends at any time ¢ coincide with the planes
x = o) and x = f(¢). Consider a gas with density p,
velocity u, pressure p and specific internal energy e and
denote quantities ahead of the shock by the suffix 0 and
quantities behind the shock by the suffix 1. Letov; = u;—U
denote the gas speed relative to the shock which moves with

dé

speed U = 7 and let m = pyv, be the mass flow through

side 0 of the shock. Apply the above theorem to the
ordinary gas dynamic conservation equations of mass,
momentum and energy that describe the flow in the two
columns of length a(f) < x < &()—e and &()+e £ x
< B(r), where ¢ is arbitrarily small and positive, to show
that as a(r)—>E&()—e and B(f)—&(f)+¢ and e—0, so the
conservation equations reduce to the ordinary gas shock
conditions,

mass conservation:
PoVo ™= P1V;;
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momentum conservation:

muy+po = muy+py,
or

Pov3+DPo = p1vi+Ppys
energy conservation:
m(3ud+eq) +uopo = mGui+e,)+u,p;.

2. Express the Lundquist equations in the form of
general conservation laws of the type

au | .. .
— +divF =divy,
Py iv ivg

where U is a scalar and F and g are vectors.

3. Use the results of the previous example and the
jump equation
[AU—F.n]+[g.n] =0,

to derive the magnetohydrodynamic jump relations, where
= ¢.n is the normal speed of the discontinuity surface
assumed to be moving with the arbitrary velocity gq.

4. Prove the generalised Hugoniot relation
1
— ) [pe]+<pde]+ £- [<[H]* =o.
y—1 16n

Use the equation of state pt = RT, and the fact that
magnetohydrodynamic shocks are compressive, to prove
that the temperature behind a shock is greater than the
temperature ahead of a shock.

5. By assuming that the magnetic field is perpendicular
to a stationary shock front, show that in an ordinary gas
shock the flow is subsonic relative to conditions behind the
shock front and supersonic relative to conditions ahead of
the shock front.
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6. Prove that the flow behind a perpendicular stationary
magnetohydrodynamic shock is sub-Alfvénic relative to
conditions behind the shock front.

7. By choosing the x-axis parallel to the normal n to a
plane magnetohydrodynamic shock front show that the
characteristic determinant associated with the jump
relations across the shock front reduces to

2
(t)?m {(r)mz— %}{(0"144'((1)[7]_1[1’]
—iCHY)m* ~[1]7'[p] ’;—Hf} =0
T

8. Derive the jump conditions across fast and slow
magnetohydrodynamic shocks, transverse shocks and
contact discontinuities.

9. By aligning the x-axis with the normal n to a plane
magnetohydrodynamic shock and using the correspondences

[v]-év, [c]-— ;15 5p, [H]-6H
and

m-Fpc,, T ~1, - [—p]-*pzaz, (Hy-H,
r [
prove that the shock jump relations transform to the one-
dimensional characteristic equations for weak dis-
continuities.



CHAPTER VII

STEADY MAGNETOHYDRODYNAMIC FLOW

§ 45. Ordinary gas dynamic characteristics in steady
flow. The notion of characteristic curves can easily be
extended to include steady flow configurations. Before
examining steady isentropic magnetohydrodynamic flow,
let us briefly consider the steady isentropic flow of an
ordinary gas. The appropriate equations can be derived
from the first two Lundquist equations by setting H = 0
and ignoring the terms involving 0/0¢, when we find that
for a polytropic gas

div (pv) = 0, és.1)

2
(v.grad)v+ % grad p =0. (45.2)

Let us consider two-dimensional flow in the (x, y)-plane
and assume that spatial discontinuities (characteristics), if
they exist, are represented by the equation

¢(x, y) = constant, (45.3)

where ¢ = 0 represents the particular discontinuity which
we wish to examine (see Fig. 22). Then, following the
reasoning of § 23, let us transform equations (45.1, 2) from
the (x, y)-plane to the (¢, y")-plane in which

y =y (45.4)

The solution in the (@, y’)-plane will then be continuous
across ¢ = 0 with respect to y’ and its derivatives, but

223
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discontinuous with respect to derivatives involving ¢. The
transformation can then be accomplished by using the
identities
o _0¢0 E_"_‘f’i+_?_, (45.5)
0x 0x 09 dy 9y d¢

Equation (45.1) becomes

p(6¢av a¢av)+( o9 a¢)ap
ox 0p = 0y 0¢ ox T 3y) 3¢

+pa,+yai#'l)- (45'6)
y A
@(x,y): (6]
-
0 X

Fi1G. 22
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Choosing a point P of the curve ¢ = 0, differencing this
result across the spatial discontinuity line there and denoting
the jump in derivatives with respect to ¢ by J, we find that

<a¢5v+ ¢ )+<v %‘—ﬁ-i-v,g(p)ép 0, (45.7)

since v and p are continuous across ¢ = 0. Now, since
d(x, ¥) = 0, it follows that along ¢ = 0 we must have

9 4xt+ 2 4y =0, 453)
ax dy

However, as dy is the gradient of ¢ = 0, it follows directly

29 and =< ¢

from equation (45.8) that — ™ are proportional to the

direction cosines n, and n,, with respect to the x and y-axes,
of thenormalnto¢ =0 at point P. So, since the equation

3¢ a¢ by

(45.7) is homogeneous, we may replace — e by n, and —

n,, when the equation immediately simplifies to the rcsult
pov,+v,0p = 0, (45.9)

where v, = n.v. Introducing the unit vector ¢ that is
tangent to the discontinuity line at P, so that n.t = 0, we
may write v = v,t+v,n where v, = vt is the tangential
component of velocity along the spatial discontinuity curve
(characteristic) ¢ = 0.

Expressing the two scalar equations corresponding to
equation (45.2) in terms of ¢ and y’ we find that

d¢ ,  0¢\0v,  a®d¢ dp v,
9¢ L2080 =0, (45.10
< * ox +"’ay>a¢ > %06 W ay (45.10)
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and
2 2
(_7? ya¢ av +&‘3_‘ﬁﬁ€+vy?_"z+‘i_a£=o.
oy 6¢ p oyop "oy p oy
45.11)
Differencing these equations across ¢ = 0 at point P and

replacmg % by n, and 8¢ by n, as before then yields

0,00, + o ndp =0, (45.12)
p

2
0,00,+ = n,6p =0. (45.13)
p

The coefficients of equations (45.9), (45.12) and (45.13)
must then satisfy the following characteristic determinant
if the equations are to have a non-trivial solution:

U PRy pn,
2

a n, v, O

p =0. (45.14)
2

4 n, 0 v,

p

Since n is a unit vector this leads to the characteristic
relation

v,(v?—a?) =0. (45.15)

Hence, assuming that ¢ = 0 is not a contact dis-
continuity for which v, = 0, equation (45.15) shows that

v2 =a’ (45.16)

Letting the angle between v and ¢ be ¥ (see Fig. 22), we find
that
v, = vsin Y, (45.17)
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and so equation (45.16) becomes

vV 1
(;) - (45.18)

However, the left-hand side of this equation is simply the
square of the Mach number M of the flow at point P and so
we finally obtain

1

2 _

M sin?
It is an immediate consequence of this equation that for
to be a real angle, and so for real spatial discontinuities
{(characteristics) to exist, we must have M = 1. This
proves that real characteristics exist, and so equations
(45.1,2) form a hyperbolic system, only in the case of
supersonic flow. When M <1 the flow is subsonic, the
characteristics become imaginary and the equations then
form an elliptic system.

Equation (45.18) has a simple geometrical interpretation
in supersonic flow which we now explain since it will be of
value later in connection with magnetohydrodynamic steady
flow. For a fixed point source P of weak disturbances
(sound waves with sound speed a) located in a uniform
medium at rest, the wavefront at any time ¢ will be a sphere
of radius az. This obvious result also follows from equation
(25.31b) as the limit of ¢, as H tends to zero. The result in
two-dimensional flow will thus be a circle centred at P with
radius az. Hence, if the point source P moves with speed v,
during time ¢ the point P will move a distance v¢. It is thus
clear that, relative to P, the disturbances propagating from
the source will lie along the tangent lines to a circle of radius
at, that pass through the point P distant vt from the centre
of the circle (Fig. 23). ~

The wedge semi-angle OPA (cone semi-angle in three-
dimensions) in two-dimensional flow is just the Mach angle

(45.19)
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Y. The lines PA and PB are lines of weak discontinuity and
are called Mach lines. When the flow is three-dimensional
the disturbance lies on the Mach cone formed by rotating
Fig. 23 about the axis of symmetry OP. The region within

Fi1G. 23

the Mach cone is the disturbed region while the region
surrounding it is at rest. The case of subsonic flow corre-
sponds to the point P lying inside the circle of radius at. It
is then obvious that no real tangents to the circle (character-
istics or Mach lines) can exist for subsonic flow.

§ 46. Magnetohydrodynamic steady parallel flow. Let
us now generalise the ideas of the previous section to the
case of the spatial discontinuities that can occur in steady
compressible flows of a perfectly conducting fluid in which
the magnetic vector H is always parallel to the velocity
vector v. As in our discussion of incompressible steady
flows in § 17, we shall refer to these as parallel flows.}
Assuming a polytropic gas, then for isentropic flow, the

1 Some writers call these aligned field flows.
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steady state Lundquist equations become
div (pv) = 0, 46.1)

2
(v.grad)v+ a; grad p+ 4”7pHx curl H=0, (46.2)

curl (v x H) = 0, (46.3)

divH = 0. (46.4)

It is easy to see that if A is some constant of pro-
portionality, the expression

H = Apv (46.5)

is a solution of equations (46.1), (46.3) and (46.4). Con-
sequently, we may replace equations (46.1) to (46.4) by the

equations
div (pv) = 0, (46.1)
a? A
(v.grad)v+ — grad p+ e vx(curl (pv)) =0. (46.6)
p 7.4

The characteristic equations for these steady state
equations may be deduced in a similar fashion to those of
the previous section. Indeed, the characteristic equation
corresponding to equation (46.1) is identical with the one
corresponding to equation (45.1) which was found to be

v,0p+pov, = 0. (46.7)

The characteristic equations corresponding to equation
(46.6) can easily be shown to be (see Example 1, § 50)

pv,80,+ pv,.0v,+a*5p = 0 (46.8)
and
2 2
1= 2P )) so,— 2H 50 =0 (46.9)
4 4

The characteristic relation that is derived from the
vanishing of the determinant of the coefficients of equations
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(46.7), (46.8) and (46.9) is then

2 2
2—-(1- -}'—I-tp) a’— ’1_“p02=0. (46.10)
4n 4n

In terms of the Alfvén number A = v/b and the Mach
number M = v/a this equation may be written
M?42 __1
(M?*4+4%—1) sin?y
where, as before, Y is the angle between v and ¢ so that
v, = vsin Y. (46.12)

Equation (46.11) is the magnetohydrodynamic steady
parallel flow equivalent of equation (45.19) to which it
tends as H—0, for then the Alfvén number 4— c0.

In order that the parallel flow should be hyperbolic, and
so have real characteristics, it is necessary that

0<sin*y £1

for then y will be real. Consequently, for real character-
istics, we must have

(46.11)

0 < (M*+A%>-1)M?*4%2 £ 1. (46.13)
So we have either,
case (f):
A>1, M>1, (46.14a)
or
case (s):

A<1l, M<1 with A2+ M?>—~1>0.  (46.14b)

The inequality (46.14a4) implies that case (f) corre-
sponds to the fast wave since it implies the condition
v>max (a, b). Similarly inequality (46.14b) implies that
case (s) corresponds to the slow wave since it implies the
condition v <min (a, b). The regions of validity of these
inequalities is indicated by the shaded regions in Fig. 24.
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When M or A are such that the flow occurs in an un-
shaded region no real characteristics exist and the system of
equations (46.1) and (46.6) becomes elliptic. In the next
section we shall examine the geometrical interpretation of
these results.

N

1.0
(s

FiG. 24

§ 47. Geometrical construction of spatial discontinuities
in parallel flow. The spatial discontinuities that occur in
parallel flow can be constructed geometrically in a manner
exactly similar to that used in ordinary supersonic flow and
illustrated in Fig. 23. However in this case, instead of a
circular wavefront diagram, we must use the appropriate
wavefront diagram from Fig. 15. To be specific we shall
consider Fig. 15(c) for which s>1(s = a*/b?), the case
s<1 being similar.

For waves expanding from a point source into a constant
state the disturbance fronts will preserve their initial shape,
expanding an amount proportional to the elapsed time ¢.
This situation is illustrated in Fig. 25 which shows the
shapes of the fast and slow wavefronts at time ¢ = 1.
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Since the flow is parallel flow, the characteristics corre-
sponding to a point source moving with velocity v, along
the x-axis will be the tangents to these wavefront curves
drawn from a point P on the x-axis distant from O an amount
vot in the sense of — v, (cf., the argument in connection with

Ay

@ + byt

o )

Fig. 25
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Fig. 23). Inspection of Fig. 25 shows that we must
distinguish four distinct cases, according as:

ab
(a) 0<Uo< m,
ab
(b) m <Uo<b,
(o) b<vy<a,
) a<uvg.

Case (b) corresponds to the end of the velocity vector falling
within the slow wavefront and case (d) corresponds to it
falling outside the fast wavefront.

Now, introducing the Mach number M = v,/a and the
Alfvén number A = v,/b, inequality (b) becomes

-1
<1+ %Iz) <A<1,

A<l, A*+M?*—1>0.

However, since a>b, it follows that M <A and so in case
(b) we find that

M<l, A<l, A*+M?*—1>0. “47.1)

Thus our geometrical arguments have resulted in conditions
(46.14b) for slow waves.

If we now consider case (d) we immediately see that
M >1 and, since a>b, we have

M>1, A>1. (47.2)

This is just condition (46.14a) for fast waves.

In the intervals specified by inequalities (a) and (c) the
geometrical construction shows that no real characteristics
exist.

This construction, independently due to H. Grad and

or
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W. R. Sears, has been used in Fig. 26 to show the char-
acteristics that occur in parallel flow and how they are
attached to a slender insulating body in steady motion.
The cases (@), (b), (c) and (d) in Fig. 26 correspond to the
cases just discussed.

) E : (b)
(© \ ; Z @)

FiG. 26
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It should be noticed that in case (b), unlike anything that
occurs in ordinary gas dynamics, the characteristics are
inclined upstream.

§ 48. Geometrical construction of spatial discontinuities
in arbitrary two-dimensional flow. The construction that
was used to study parallel flow in the previous section
extends directly to arbitrary two-dimensional steady flow.
It must suffice here that we show the possible characteristics
and their local behaviour in the vicinity of a slender
insulating body in steady motion with velocity v,.

Again we use the wavefront diagram from Fig. 15 that
is appropriate to the flow and draw from the origin a line
of length vy in the direction —wv,. The characteristics are
again obtained by forming the tangents to the fast and slow
wavefronts from this point. The results of this construction
are shown in Fig. 27.

A comparison of Figs. 26 and 27 shows the degenerate
behaviour of the parallel flow case, but the remarkable
feature of upstream characteristics is exhibited by both
flows.

It is possible to solve general flow problems of this type
by using the notion of generalised Riemann invariants, a
form of which was introduced previously in connection with
simple waves. Although we shall not examine this problem
further it is nevertheless worth drawing attention to the
effect of constant components of the magnetic field and
velocity normal to the plane of the flow. When no such com-
ponents are present, the characteristic relation is of fourth
degree as indicated in Fig. 27 by the four real character-
istics in the purely hyperbolic regions. However, when they
are present there is an essential difference and the character-
istic relation becomes one of the sixth degree, corresponding
to the additional occurrence of transverse disturbances with
the consequent complication of the solution. The con-
struction of the characteristics in this case involves the
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construction of characteristic cones. The local shape of
such a cone is obtained by forming the ruled surface
comprising all the tangents to the wavefront surface from

J
<
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the end point of the reversed velocity vector —v,. In this
case the wavefront surface is, of course, the surface obtained
by rotating the appropriate wavefront diagram of Fig. 15
around its x-axis (i.e., revolving it about H).

§ 49. Discontinuities in the static case. When no motion
occurs (i.e., v = 0) the Lundquist equations reduce to

grad p+ 4ﬂ Hxcurl H=0 (49.1)
(A

and
div H = 0. (49.2)

Even these simplified equations allow spatial dis-
continuities to occur as we shall now show. If, at some
point of interest P, we orient the x-axis so that it is directed
along the normal n to such a discontinuity the equations
become locally one-dimensional in terms of the independent
variable x and simplify to (cf., the one-dimensional equations
at the start of § 25):

ap u o0H
L+ = Hx X —1=0 49.3
0x y 4n (n ax) 9.3
and
0, _OH, _,, (49.4)
0x 0x

Differencing these equations across the static dis-
continuity surface then gives

ndp+ 4£ Hx(nx5H)=0 (49.5)
T

and
0H, =0, (49.6)

where, as before, § signifies the jump in the normal derivative
of the associated function.
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We may write equation (49.5) in the alternative form
2
no (p+ ‘;i) —HJSH=0. (49.7)
T

Taking the scalar product of this equation with n and
using equation (49.6) we then see that

2
) <p+ lﬂ) =Jp* =0. (49.8)
8n

Now, since 6H, = 0, it follows that
0H = toH,+noH,
O0H = téH,, (49.9)

where 6H, is the tangential component of H with respect
to the normal n, and n.t = 0. However, unless 6H, = 0,
in which case no discontinuity exists, equations (49.7) to
(49.9) yield the result that the static discontinuity surface
(characteristic surface) at point P is given by

H,=0. (49.10)

becomes

Since P was an arbitrary point of the static dis-
continuity surface it follows immediately that equation
(49.10) is valid over the entire static discontinuity surface.

Let us denote the surface by the relation

¢(x, y, z) = constant. (49.11)

The normal n to the surface at any point is then pro-
portional to grad ¢. Consequently, equation (49.10) may
be expressed in the alternative form

H.gradg = 0, (49.12)

implying that the discontinuity surface is a magnetic surface
that is composed of magnetic lines of force.
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Taking the scalar product of equation (49.1) with H gives

H.gradp = 0, (49.13)

showing that the equi-pressure surfaces p = constant are
also magnetic surfaces. However, since by virtue of
equation (2.9)

4~ curl B, (49.14)
[4

we find, directly from equation (49.1), that
j.gradp = 0. (49.15)

Equations (49.12), (49.13) and (49.15) imply that
magnetic surfaces and equi-pressure surfaces are also current
surfaces. So, across such static discontinuity surfaces, a
discontinuity in pressure and magnetic field may exist
provided that the pressure p* is continuous across the
surface as required by equation (49.8).

This important conclusion forms the basis of experi-
mental attempts at plasma containment purely by means of
magnetic fields. A full discussion of this important topic
involves consideration of the complicated stability problems
of magnetically confined plasmas and will not be attempted
here. We can, however, give a brief illustration of a typical
and fundamental problem.

Let us consider the special case in which an in-
compressible plasma of density p which is bounded by the
plane x = 0 is supported against gravity by a vacuum
magnetic field which does not penetrate the plasma region.
The situation is illustrated in Fig. 28(a) in which the shaded
region denotes the undisturbed plasma and the dotted
region denotes the magnetic field directed normal to the
plane of the diagram.

Then, from condition (49.8), on the interface x = 0 we
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FiG. 28
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must have the boundary condition

2
p= % (49.16)

where p is the plasma pressure immediately above the
interface and H is the magnetic field strength in the vacuum
region. If, now, the plasma equilibrium is altered so that
the plasma moves normal to the magnetic field as in Fig.
28(b), so that the shaded regions P, and P, are of equal area,
the plasma will not be compressed and the lines of force
will remain unbent. Consequently the magnetic energy
will remain constant, while the pressure at the bottom of
region P; increases by an amount pgdx, whereas the
pressure at the top of P, decreases by an equal amount,
where dx is a small displacement normal to the interface.
Since the forces act to increase the size of the ripples on the
interface, the configuration must be unstable. This type of
instability is usually called the flute type instability.

This problem is the magnetohydrodynamic analogue of
the well-known Rayleigh-Taylor instability experienced by
a dense fluid supported against gravity by a less dense
fluid. The magnetic field in the vacuum region plays
the part of the less dense fluid.

A more realistic configuration is that which occurs in
the so-called pinch effect in which the magnetic field due to
a current I flowing along the surface of a cylindrical plasma
column of radius R compresses the plasma. The magnetic
field is circumferential and does not exist inside the plasma
column; the surface magnetic field Hy at radius R being
simply

2

Hp = —. 49.17
R (49.17)

Consequently, if the plasma pressure p is constant,
equilibrium will result when the magnetic pressure at the
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exterior surface of the column balances the internal hydro-
static pressure. For equilibrium, the boundary condition
(49.16) thus becomes
p?
27R*

This simple result illustrates an important form of
plasma instability that can occur in plasma columns.
Since the magnetic pressure varies inversely as R?, should
any part of the column have a radius slightly less than R,
the magnetic pressure at that point will exceed the hydro-
static pressure thereby causing the column to collapse.

An interesting special case of equation (49.1) occurs when
the field is force-free and the electromagnetic body force

p= (49.18)

L J x H vanishes. This implies that H x curl H vanishes and
¢

equations (49.1,2) simplify to
gradp=0, divH =0. (49.19)
Since when the body force vanishes everywhere the current

vector j must always be parallel to the magnetic vector H,
it follows that for a force-free field we may write

curl H = JH, (49.20)

where A is some function of position.
Taking the curl of this equation and using the result
div H = 0 then yields

V2H+)*H = H x grad A. (49.21)

When A is constant this becomes the vector Helmholtz
equation

V:H+)*H = 0. (49.22)

It is possible to express the general solution of equation
(49.22) in terms of an arbitrary constant unit vector m and
a solution u to the corresponding scalar Helmholtz equation
(see Example 4, § 50).
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§ 50. Examples
1. Derive the characteristic relations for steady parallel
magnetohydrodynamic flow:

pov,+v,0p =0,

a2
0,00, + ;. Ov, + ; dop =0,

2 2
<1— A ”p) v, — LK v,0p =0,
4z

4n
where H = Apv and v = vt+v,n. Deduce from the last

equation that the flow and the magnetic field do not rotate
and show that

A? .
iy o(pv,) = ov,,
4
and hence that
0H, =0 and Au OH, = dv,.
4r

2. Consider steady parallel magnetohydrodynamic flow
and by introducing y, the angle between the velocity vector
v and the tangential vector ¢ to the discontinuity surface,
show that the characteristic equations together with the
result

. M*+A4%*-1
it =
yield
(v2—a?) o _ v,. O,
p
and

W2—ad)v? =sin?Yy—-M "*=(M*-1)/M 42
Hence show that for a compressive change (6p >0),
0,.00,>0 if M>1

v,.00,<0 if M<I.

and
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Selecting the direction of ¢ such that v,>0 show that

ov,>0, 6H,>0 when M>1
and

ov,<0, O0H,<0 when M<I.

Hence since 6H, = 0, show that for a compressive change
the magnetic pressure p,, increases when M >1 and decreases
when M <1.

3. Prove that if u is a solution of the scalar Helmholtz
equation
VZiu+i*u = 0,

and m is a constant unit vector, the vectors
X =curl (mu), ¥ = icurl X

are independent solutions of the vector Helmholtz equation
V2H+)*H = 0

involving a solenoidal vector H.
Hence, by showing that

curl (X+Y) = A(X+7Y),
deduce that H has the general solution

H = curl (mu)+ -licurl curl (mu).



SOLUTIONS TO EXAMPLES

Most of the examples given at the end of each chapter
are phrased in such a way that it is not necessary to provide
a solution. Answers for the remainder are given below.

CHAPTER 111
8. 1/eR,.

CHAPTER 1V

3. A=v, A=v+a When A =v the characteristic
equations describe a contact discontinuity and dv = 0,
a*dp + g—g dS = 0 with dS arbitrary. When A = vta
the characteristic equations reduce to +adp +pdv = 0 and
ds = 0.

5. A% = c%/ep. The characteristic surface is a sphere of
radius ct/\/eu at time ¢.

11. Transverse wave: x = Ry cos 8+bt, y = R, sin 6.
These equations represent two circles each of radius R,
moving with speeds +b along the x-axis.

Fast wave:
x _ Rgcos 0

+ cos 0L — ssin’ L,
b b (c//b)[(1+5)*—4s cos? 0]

. 2
Y _ Rosinb . o —i+ scozse }t
b (cy/D)[(1 +5)*—4s cos® 0]
245
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CHAPTER V
2. Extrema lie on o = 1.

7. The piston velocity ¥ is negative and we distinguish
two cases. (a) If ¥'>(v,).,y, then the piston velocity does
not exceed the cavitation speed and the steady state lies
in the region &> a, while the simple wave extends up to the
piston face and occupies the region V'<é<a, (b) If
V<(vy).ay» then the piston speed exceeds the cavitation
speed. The steady state still lies in the region £>a, but
now the simple wave occupies the region (v,)..,<&<do
and a cavitation zone extends from this to the piston face
occupying the region V<& <(v,) -

8. (U)eav = —2K;1/K;p0.
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Adiabatic, 32
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— velocity, 49, 52, 127
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— wave generation, 187 ff.
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Bernoulli’s equation, 83, 103, 105
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boundary condition, electric, 73
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— —, inviscid fluid, 63
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— —, viscous fluid, 63

boundary layer, 95, 98, 108
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— determinant, 115

— equations, 120, 122
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— surface, 118
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223 ff.
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coefficient of bulk viscosity, 27

— — dynamic viscosity, 27

— — kinematic viscosity, 41
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— rarefaction, 173

conduction current, 9
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conservation of charge, 9

— — energy, 32, 34, 35, 221

— — mass, 34, 220

— — momentum, 25, 34, 124, 221
conservation law, general, 196
conservative force, 25, 59
constant state, region of, 155
constitutive equations, 9, 16, 36
— — in moving conductor, 16
contact surfaces, 133, 157
continuity equation, 24, 123
Cowling, T. G., 43
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Debye shielding length, 3, 4
decay time, 12
discontinuity, contact, 217
el jump) 62
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—, weak, 63

dispersion relation, 145
dispersive medium, 145
displacement current, 11
drag coefficient, 107

Electromagnetic force, 22

electron mean free path, 6

elliptic equation, 118

— system, 227

energy of electromagnetic field,
20, 57

enthalpy, 32

entropy, 29

— condition, 206

— jump, 133

— wave, 128, 133, 152, 157
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equation of fluid motion, 24, 34,
58

— — state, 32

equations, pre-Maxwell, 11

equi-pressure surface, 239

escape speed, 183

external force, 22

Faraday’s law of induction, 66

fast shock, 213

— wave, 128, 129

field equations, 9
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—, Couette, 95 ff, 106, 107

—, Hartmann, 90 ff., 103, 105, 107
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Friedrichs, K. O., 163

— diagrams, 138

frozen-in condition, 43, 47, 58

Geometrical construction of slow
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— — — spatial discontinuities,
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Grad, H., 233

Harmonic function, 60
Hartmann number, 91
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heat due to viscous forces, 30
heat flux, 100

Helmholtz equation, 242, 244
Hugoniot relation, 205, 221
hyperbolic equation, 117, 154

Ideal conducting fluid, 42

— gas, 32

ignorable coordinate, 84, 88

incompressibility condition, 76

incompressible fluid, 44, 47, 59,
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inviscid fluid, 22 ff., 59
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— transformation, 54
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— cone, 228
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— flux, 37, 58

— —, rate of change theorem, 40,
41
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— line of force, 44, 45, 51, 238

magnetic Reynolds number, 42,
93

— surface, 43, 45, 238

— viscosity, 40
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— flow, incompressible, 76 ff.
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— shock, 199 ft.

— —, compressive nature of, 208

— — jump conditions, 201
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— simple waves, 157
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Maxwell equations, 8, 149
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Newton’s law of cooling, 101
node, 166

non-Relativistic condition, 12, 36

Ohm’s law, 9, 72

Parabolic equation, 118
perfect conductor, 71, 185

— insulator, 71

pinch effect, 241

piston problem, generalised, 184
— —, simple, 180

plasma, 3

polytropic gas, 33, 123
Poynting vector, 21
Prandtl-Meyer expansion, 151
principle of superposition, 139

Ray velocity, 120

Rayleigh-Taylor instability, 241
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reversible process, 29
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194
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192 ff.

— —, magnetic, 169

151, 168,

Saddle point, 193

scalar potential, 59

Sears, W. R., 234

shock, 202

— back, 206

— front, 197

— plane, 199

shock stability, 218

—, switch-off, 215

—, switch-on, 215

— wave, transverse, 215

simple waves, 151
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— —, variation of physical
quantities across, 171 ff.
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spatial discontinuities in parallel
flow, 231

special relativity, 13
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33

— — — volume, 33

— volume, 29

streamline, 76, 82

stress, 26

summation convention, 57
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surface, current, 71, 159 vorticity, 59, 61
— of normal velocity, 120
switch-off shock, 215 Walién, C., 43
— -on shock, 215 wave, 109
—, backward-facing, 181

Temperature, 29 —, compression, 172
— distribution, 99 ff., 106 — equation, 52
thermal conduction, 30, 100 —, expansion, 172
total derivative following fluid —, forward-facing, 181

motion, 23 — number, 144
— energy of fluid, 31 — profile, change of, 178
— pressure, 48, 132 —, rarefaction, 172
transverse disturbance, 52 —, shock, 195
— shock, 215 —, switch-off, 172
— wave, 128, 131, 132 —, switch-on, 173
turbulence, 98 wavefront, 109

— as envelope, 137, 154

Velocity, group, 145 — propagation speed, 114, 150
—, phase, 145 — trace, 112
— potential, 104 waves, magnetoacoustic, 130
viscosity stress tensor, 28 —, transverse simple, 159

viscous stress, 26 weak discontinuity, surface of, 109



About the author

Flan Jeffrey is emeritus professor of engineeting mathematics at (Newcastle. cfte has
had a distinguished which included work at University of Delaware, Stanford,
Wisconsin and City Vniversity gftong Kong. dfte has published 14 books, some at under-
g‘zaduate level and others at the xesearch m.on.og'za,o/z leve/, some with 8/a'u'n.get, and his
sales xwecords look very good. cfte also is well k b se he edited some important
xefetence works such as the gffandbook of cflathematical gfoxmula.

dfte has given courses on engineering mathematics at YN and YE Yniversities.

Jhe Newcastle University has announced with deep regret the death of fmetxitus
Professor lan Jeffrey on Funday 6 June 20170.

fmeritus gProfessor Jeffrey was appointed to the Chair of fngineeting cflathematics
on 1 September 1963, During his career he held the post of gftead of fngineering
Jflathematics. cfte xetired on 30 September 1984 after which time the title of fmetritus
cProfessor was conferred on him.



